CRAN Package Check Results for Package quhomology

Last updated on 2024-04-19 20:56:48 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.1.1 2.67 32.65 35.32 NOTE
r-devel-linux-x86_64-debian-gcc 1.1.1 NOTE
r-devel-linux-x86_64-fedora-clang 1.1.1 43.83 NOTE
r-devel-linux-x86_64-fedora-gcc 1.1.1 40.53 NOTE
r-prerel-macos-arm64 1.1.1 18.00 NOTE
r-prerel-windows-x86_64 1.1.1 3.00 48.00 51.00 NOTE
r-patched-linux-x86_64 1.1.1 3.56 31.02 34.58 NOTE
r-release-linux-x86_64 1.1.1 2.47 31.00 33.47 OK
r-release-macos-arm64 1.1.1 17.00 OK
r-release-macos-x86_64 1.1.1 24.00 OK
r-release-windows-x86_64 1.1.1 4.00 50.00 54.00 OK
r-oldrel-macos-arm64 1.1.1 23.00 OK
r-oldrel-windows-x86_64 1.1.1 4.00 53.00 57.00 OK

Check Details

Version: 1.1.1
Check: Rd files
Result: NOTE checkRd: (-1) boundary_matrix.Rd:28: Lost braces; missing escapes or markup? 28 | This functions takes all words (or just the non-degenerate ones) of length $degree$ in the rack/biquandle (which are represented by $Z_k$) and then calculates their boundary via the following equation. For this, let $x=(x_i)_0^{degree-1}$ be an element of the rack/birack and let $n:=degree-1$. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix.Rd:29: Lost braces; missing escapes or markup? 29 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:25: Lost braces; missing escapes or markup? 25 | This functions takes all degenerate words of length $degree$ in the rack/biquandle (which are represented by ${Z}_k$) and then calculates their boundary via the followi ng equation. For this, let $x=(x_i)_0^{degree-1}$ be an element of the rack/birack and let $n:=degree-1$. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:25: Lost braces; missing escapes or markup? 25 | This functions takes all degenerate words of length $degree$ in the rack/biquandle (which are represented by ${Z}_k$) and then calculates their boundary via the followi ng equation. For this, let $x=(x_i)_0^{degree-1}$ be an element of the rack/birack and let $n:=degree-1$. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_matrix_degenerate.Rd:26: Lost braces; missing escapes or markup? 26 | $$partial(x) = Sum_{i=0}^n (-1)^i ( (x_0...{(^x_i)}...x_n)-(x_0^{x_i}x_1^{x_i}...x_{i-1}^{x_i}{x_{i+1}}_{x_i}...{x_n}_{x_i}) )$$, where ^x_i means except x_i. | ^ checkRd: (-1) boundary_names.Rd:26: Lost braces; missing escapes or markup? 26 | This calculates all possible permutations of elements in $Z_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the degenerate ones (that is, those where $x_i=x_{i+1}$, for an element $x=(x_i)_0^{degree})$). | ^ checkRd: (-1) boundary_names.Rd:26: Lost braces; missing escapes or markup? 26 | This calculates all possible permutations of elements in $Z_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the degenerate ones (that is, those where $x_i=x_{i+1}$, for an element $x=(x_i)_0^{degree})$). | ^ checkRd: (-1) boundary_names_degenerate.Rd:23: Lost braces; missing escapes or markup? 23 | This calculates all possible permutations of elements in ${Z}_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the non-degenerate ones (that is, those where $x_i =/= x_{i+1}$ for all $i=0,...,degree-1$, for an element $x=(x_i)_0^{degree})$). | ^ checkRd: (-1) boundary_names_degenerate.Rd:23: Lost braces; missing escapes or markup? 23 | This calculates all possible permutations of elements in ${Z}_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the non-degenerate ones (that is, those where $x_i =/= x_{i+1}$ for all $i=0,...,degree-1$, for an element $x=(x_i)_0^{degree})$). | ^ checkRd: (-1) boundary_names_degenerate.Rd:23: Lost braces; missing escapes or markup? 23 | This calculates all possible permutations of elements in ${Z}_k$ of length $degree$. If degenerate is true, it loops through all of them, removing the non-degenerate ones (that is, those where $x_i =/= x_{i+1}$ for all $i=0,...,degree-1$, for an element $x=(x_i)_0^{degree})$). | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-prerel-macos-arm64, r-prerel-windows-x86_64, r-patched-linux-x86_64

Version: 1.1.1
Check: Rd contents
Result: NOTE Auto-generated content requiring editing in Rd file 'quhomology-package.Rd': \details: ‘...o use the package, including the most important functions ~~’ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-prerel-macos-arm64, r-prerel-windows-x86_64, r-patched-linux-x86_64