SpatPCA: Regularized Principal Component Analysis for Spatial Data

Provide regularized principal component analysis incorporating smoothness, sparseness and orthogonality of eigenfunctions by using the alternating direction method of multipliers algorithm (Wang and Huang, 2017, <doi:10.1080/10618600.2016.1157483>). The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D.

Version: 1.2.0.0
Imports: Rcpp, RcppParallel
LinkingTo: Rcpp, RcppArmadillo, RcppParallel
Published: 2018-02-20
Author: Wen-Ting Wang, Hsin-Cheng Huang
Maintainer: Wen-Ting Wang <egpivo at gmail.com>
BugReports: https://github.com/egpivo/SpatPCA/issues
License: GPL-2
URL: https://github.com/egpivo/SpatPCA
NeedsCompilation: yes
SystemRequirements: GNU make
CRAN checks: SpatPCA results

Downloads:

Reference manual: SpatPCA.pdf
Package source: SpatPCA_1.2.0.0.tar.gz
Windows binaries: r-devel: SpatPCA_1.2.0.0.zip, r-devel-gcc8: SpatPCA_1.2.0.0.zip, r-release: SpatPCA_1.2.0.0.zip, r-oldrel: SpatPCA_1.2.0.0.zip
OS X binaries: r-release: SpatPCA_1.2.0.0.tgz, r-oldrel: SpatPCA_1.2.0.0.tgz
Old sources: SpatPCA archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SpatPCA to link to this page.