TAG: Transformed Additive Gaussian Processes

Implement the transformed additive Gaussian (TAG) process and the transformed approximately additive Gaussian (TAAG) process proposed in Lin and Joseph (2019+) <doi:10.1080/00401706.2019.1665592>. These functions can be used to model deterministic computer experiments, obtain predictions at new inputs, and quantify the uncertainty of the predictions. This research is supported by a U.S. National Science Foundation grant DMS-1712642 and a U.S. Army Research Office grant W911NF-17-1-0007.

Version: 0.2.1
Depends: R (≥ 3.5.0)
Imports: Rcpp, DiceKriging, Matrix, mgcv, FastGP, mlegp, randtoolbox, foreach
LinkingTo: Rcpp, RcppArmadillo
Published: 2020-08-27
Author: Li-Hsiang Lin and V. Roshan Joseph
Maintainer: Li-Hsiang Lin <llin79 at gatech.edu>
License: GPL-2
NeedsCompilation: yes
CRAN checks: TAG results

Downloads:

Reference manual: TAG.pdf
Package source: TAG_0.2.1.tar.gz
Windows binaries: r-devel: TAG_0.2.1.zip, r-release: TAG_0.2.1.zip, r-oldrel: TAG_0.2.1.zip
macOS binaries: r-release: TAG_0.2.1.tgz, r-oldrel: TAG_0.2.1.tgz
Old sources: TAG archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=TAG to link to this page.