
Analysing clinical trial information

Ralf Herold

2020-10-11

General information on the ctrdata package is available here: https://github.com/rfhb/ctrdata.

Remember to respect the registers’ terms and conditions (see ctrOpenSearchPagesInBrowser(copyright

= TRUE)). Please cite this package in any publication as follows: Ralf Herold (2020). ctrdata: Retrieve
and Analyze Clinical Trials in Public Registers. R package version 1.4, https://cran.r-project.org/package=
ctrdata

Preparations

Here using MongoDB, which is faster than SQLite, can handle credentials, provides access to remote servers
and can directly retrieve nested elements from paths. See README.md and Retrieve clinical trial informa-
tion for examples using SQLite.

db <- nodbi::src_mongo(

url = "mongodb://localhost",

db = "some_database_name",

collection = "some_collection_name")

db

MongoDB 3.6.8 (uptime: 244492s)

URL: laptop.home/some_database_name

Collection: some_collection_name

See Retrieve clinical trial information for more details.

library(ctrdata)

These two queries are equivalent, for

completed interventional (drug) trials

with children with a neuroblastoma

from either register.

ctrLoadQueryIntoDb(

using queryterm and register ...

queryterm = "query=neuroblastoma&age=under-18&status=completed",

register = "EUCTR",

euctrresults = TRUE,

con = db

)

ctrLoadQueryIntoDb(

... or using full url of search results

queryterm =

1

https://github.com/rfhb/ctrdata
https://cran.r-project.org/package=ctrdata
https://cran.r-project.org/package=ctrdata
../README.md
ctrdata_retrieve.Rmd
ctrdata_retrieve.Rmd
ctrdata_retrieve.Rmd

"https://clinicaltrials.gov/ct2/results?cond=neuroblastoma&recrs=e&age=0&intr=Drug",

con = db

)

dbQueryHistory(con = db)

query-timestamp query-register query-records

1 2020-10-11 22:11:49 EUCTR 128

2 2020-10-11 22:12:08 CTGOV 190

Find fields / variables of interest

Specify a part of the name of a variable of interest; all variables including deeply nested variable names are
searched.

dbFindFields(namepart = "date", con = db)

Finding fields in database (may take some time)

Field names cached for this session.

[1] "completion_date"

[2] "e231_full_title_date_and_version_of_each_substudy_and_their_related_objectives"

[3] "e231_full_title_date_and_version_of_each_substudy_and_their_related_objectives_es"

[4] "last_update_posted"

[5] "last_update_submitted"

[6] "last_update_submitted_qc"

[7] "n_date_of_competent_authority_decision"

[8] "n_date_of_ethics_committee_opinion"

[9] "p_date_of_the_global_end_of_the_trial"

[10] "primary_completion_date"

[11] "provided_document_section.provided_document.document_date"

[12] "required_header.download_date"

[13] "start_date"

[14] "verification_date"

[15] "x6_date_on_which_this_record_was_first_entered_in_the_eudract_database"

The search for fields is cached and thus accelerated during the R session, as long as no new
ctrLoadQueryIntoDb() is executed.

Data frame from database

The fields of interest can be obtained from the database and are represented in an R data.frame:

result <- dbGetFieldsIntoDf(

c("f41_in_the_member_state",

"f422_in_the_whole_clinical_trial",

"a1_member_state_concerned",

"p_end_of_trial_status",

"n_date_of_competent_authority_decision",

"a2_eudract_number",

"overall_status",

"start_date",

"primary_completion_date"),

con = db)

2

Metadata from data frame

The objects returned by functions of this package include attributes with metadata to indicate from which
database, table / collection and query details. Metadata can be reused in R.

attributes(

result

)

$`ctrdata-dbname`

[1] "some_database_name"

#

$`ctrdata-table`

[1] "some_collection_name"

#

$`ctrdata-dbqueryhistory`

query-timestamp query-register query-records

1 2020-10-12 22:11:49 EUCTR 128

2 2020-10-12 22:12:08 CTGOV 190

query-term

1 query=neuroblastoma&age=under-18&status=completed

2 cond=neuroblastoma&recrs=e&age=0&intr=Drug

In the database, the variable "_id" is the unique index for a record. This "_id" is the NCT number for
CTGOV records (e.g., “NCT00002560”), and it is the EudraCT number for EUCTR records including the
postfix identifying the EU Member State (e.g., “2008-001436-12-NL”).

It is relevant to de-duplicate records because a trial can be registered in both CTGOV and EUCTR, and
can have records by involved country in EUCTR.

De-duplication is done at the analysis stage because this enables to select if a trial record should be taken
from one or the other register, and from one or the other EU Member State.

The basis of de-duplication is the recording of additional trial identifiers in supplementary fields (variables),
which are checked and reported when using function dbFindIdsUniqueTrials():

Obtain de-duplicate trial record ids

ids <- dbFindIdsUniqueTrials(

preferregister = "EUCTR",

con = db

)

* Total of 318 records in collection.

Searching for duplicates, found

- 93 EUCTR _id were not preferred EU Member State record of trial

- 3 CTGOV _id (nct) in EUCTR a52_us_nct_...

- 5 CTGOV secondary_id / nct_alias / org_study_id in EUCTR a2_eudract_number

- 0 CTGOV secondary_id / nct_alias / org_study_id in EUCTR a52_us_nct_...

- 0 CTGOV secondary_id / nct_alias / org_study_id in EUCTR a51_isrctn_...

- 10 CTGOV secondary_id / nct_alias / org_study_id in EUCTR a41_sponsors_protocol_...

Concatenating 35 records from EUCTR and 179 from CTGOV:

= Returning keys (_id) of 214 out of total 318 records in collection "some_collection_name".

The unique ids can be used like this to de-duplicate the data.frame created above:

3

Eliminate duplicate trials records:

result <- result[result[["_id"]] %in% ids,]

#

nrow(result)

[1] 214

Simple analysis - dates

In a data.frame generated with dbGetFieldsIntoDf(), fields are typed as dates, logical and numbers.

str(result)

$ _id : "2005-001267-63-IT" "2005-002089-13-GB" ...

$ f41_in_the_member_state : int NA 15 5 37 NA 24 100 NA 600 24 ...

$ f422_in_the_whole_clinical_trial : int 230 63 12 67 70 NA 100 156 2230 NA ...

$ a1_member_state_concerned : chr "Italy - Italian Medicines Agency"

$ p_end_of_trial_status : chr "Completed" "Completed" ...

$ n_date_of_competent_authority_decision : Date, format: "2005-06-02" "2005-09-06" ...

$ a2_eudract_number : chr "2005-001267-63" "2005-002089-13" ...

$ overall_status : chr NA NA NA NA ...

$ start_date : Date, format: NA NA ...

$ primary_completion_date : Date, format: NA NA ...

This facilitates using the respective type of data for analysis, for example of dates with base R graphics:

Open file for saving

png("vignettes/nb1.png")

Visualise trial start date

hist(

result[["n_date_of_competent_authority_decision"]],

breaks = "years")

box()

dev.off()

Merge corresponding fields from registers

However, the field “n_date_of_competent_authority_decision” used above exists only in EUCTR, and it
corresponds to the field “start_date” in CTGOV. Thus, to provide a wider picture, the two fields can be
merged for analysis, using the convenience function dfMergeTwoVariablesRelevel() in ctrdata package:

Merge two variables into a new variable:

result$trialstart <- dfMergeTwoVariablesRelevel(

result,

colnames = c(

"n_date_of_competent_authority_decision",

"start_date"))

Plot from both registers

png("vignettes/nb2.png")

hist(

result[["trialstart"]],

4

Figure 1: Histogram1

5

breaks = "years")

box()

dev.off()

Figure 2: Histogram2

In a more sophisticated use of dfMergeTwoVariablesRelevel(), values of the original variables can be
mapped into new values of the merged variable, as follows:

First, define how values of the new, merged variable

(e.g., "ongoing") will result from values of the

original variable (e.g, "Recruiting):

mapped_values <- list(

6

"ongoing" = c("Recruiting", "Active", "Ongoing",

"Active, not recruiting",

"Enrolling by invitation", "Restarted"),

"completed" = c("Completed", "Prematurely Ended", "Terminated"),

"other" = c("Withdrawn", "Suspended", "No longer available",

"Not yet recruiting", "Temporarily Halted",

"Unknown status"))

Secondly, use the list of mapped

values when merging two variable:

tmp <- dfMergeTwoVariablesRelevel(

result,

colnames = c("overall_status",

"p_end_of_trial_status"),

levelslist = mapped_values)

table(tmp)

completed ongoing

209 5

Annotations made by user

The fields that ctrdata adds to each record are annotation and record_last_import. The annotation field
is a single string that is only added if a user specifies an annotations when retrieving trials (Retrieve clinical
trial information). The last date and time when the trial record was imported is updated automatically.
Also these fields can be used for analysis. For example, string functions can be used for annotations e.g. to
split it into components. Since no annotations were specified when retrieving the trials in the steps above,
there are so far no annotation fields and stopifnodata is set to FALSE to avoid the function raises an error
to alert users:

result <- dbGetFieldsIntoDf(

fields = c("annotation", "record_last_import"),

stopifnodata = FALSE,

con = db)

str(result)

$ _id : chr "2004-004386-15-DE" "2004-004386-15-ES" ...

$ annotation : chr "site_de" NA ...

$ record_last_import: POSIXct, format: "2020-10-12 20:11:45" ...

Analysing nested fields such as trial results

The registers represent clinical trial information by nesting fields (e.g., several reporting groups within several
measures within one of several endpoints). A visualisation of this hierarchical representation for CTGOV is
this:

remotes::install_github("https://github.com/hrbrmstr/jsonview")

jsonview::json_tree_view(result[["clinical_results.outcome_list.outcome"]][

result[["_id"]] == "NCT00520936"])

7

ctrdata_retrieve.Rmd
ctrdata_retrieve.Rmd

Figure 3: CtgovNested

8

The analysis of nested information such as the highlighted duration of response can be done with ctrdata

as follows. The main steps are:

• to transform nested information to a long, name-value data.frame and then

• to identify where the measures of interest (e.g. duration of response, blue circles above) are located
in the information hierarchy by specifying the name and value of fields (wherename, wherevalue) and
finally

• to obtain the value of the item by specifying the name(s) of its value field(s) (valuename, red circles
above).

1. Create data frame from results fields.

These are the key results fields from

CTGOV and from EUCTR:

result <- ctrdata::dbGetFieldsIntoDf(

fields = c(

CTGOV

"clinical_results.baseline.analyzed_list.analyzed.count_list.count",

"clinical_results.baseline.group_list.group",

"clinical_results.baseline.analyzed_list.analyzed.units",

"clinical_results.outcome_list.outcome",

"study_design_info.allocation",

EUCTR

"@attributes.eudractNumber",

"trialInformation",

"subjectDisposition.recruitmentDetails",

"baselineCharacteristics.baselineReportingGroups.baselineReportingGroup",

"endPoints.endPoint",

"trialChanges.hasGlobalInterruptions",

"subjectAnalysisSets",

"adverseEvents.seriousAdverseEvents.seriousAdverseEvent"

),

con = db

)

Keep only unique trial records

result <- result[

result[["_id"]] %in% ctrdata::dbFindIdsUniqueTrials(

con = db),

]

2. The columns of the results data.frame

contain nested lists of fields, see

str(result[["endPoints.endPoint"]])

All nested data are transformed to a long,

name-value data.frame (resulting in several

hundred rows per trial record):

long_result <- ctrdata::dfTrials2Long(

df = result

)

3. Obtain values for fields of interest where

they related to measures of interest. The

9

parameters can be regular expressions.

dor <- dfName2Value(

df = long_result,

wherename = paste0(

"clinical_results.*outcome.measure.title|",

"endPoints.endPoint.title"),

wherevalue = "duration of response",

valuename = paste0(

"endPoints.*armReportingGroup.tendencyValues.tendencyValue.value|",

"clinical_results.*category_list.category.measurement_list.measurement.value"

)

)

#

str(dor)

'data.frame': 31 obs. of 5 variables:

$ trial_id: chr "2013-001142-34-GB" "2013-001142-34-GB" ...

$ main_id : int 4 4 7 7 7 7 7 1 1 10 ...

$ sub_id : int 1 2 1 2 3 4 5 1 2 NA ...

$ name : chr "endPoints.endPoint.armReportingGroups ...

$ value : num 7.2 18.6 706 84.5 413.5 ...

Just in this case and to make the example meaningful:

Duration of response has been reported variably in

months and days. Here, just select trials reporting

duration of response in months:

dor <- dor[

grepl("months",

dfName2Value(

df = long_result,

wherename = paste0(

"clinical_results.*outcome.measure.title|",

"endPoints.endPoint.title"),

wherevalue = "duration of response",

valuename = paste0(

"clinical_results.*measure.units|",

"endPoints.endPoint.unit")

)[["value"]]),]

Finally plot

png("vignettes/dorplot.png")

plot(

dor[["value"]],

las = 1,

xlab = "Trial #",

ylab = "Duration of response [months]",

main = "Neuroblastoma trials")

dev.off()

Analysing primary endpoints

Text analysis has to be used for many fields of trial information from the registers. Here is an example
to simply categorise the type of primary endpoint. In addition, the number of subjects are extracted and

10

Figure 4: DoRplot

11

compared by type of primary endpoint.

Several "measure" entries are in "primary_outcome".

They are concatenated into a list when specifying

the JSON path "primary_outcome.measure"

result <- dbGetFieldsIntoDf(c(

CTGOV

"primary_outcome.measure",

"enrollment",

EUCTR

"e51_primary_end_points",

"f11_trial_has_subjects_under_18"

"f11_number_of_subjects_for_this_age_range"),

con = db)

De-duplicate

result <- result[

result[["_id"]] %in%

dbFindIdsUniqueTrials(con = db),]

Merge primary endpoint (pep)

result$pep <- dfMergeTwoVariablesRelevel(

df = result,

colnames =

c("primary_outcome.measure",

"e51_primary_end_points")

)

Merge number of subjects

result$nsubj <- dfMergeTwoVariablesRelevel(

df = result,

colnames =

c("enrollment",

"f11_number_of_subjects_for_this_age_range")

)

For primary endpoint of interest,

use regular expression on text:

result$pep_is_efs <- grepl(

pattern = "((progression|event|relapse|recurrence|disease)[-]free)|pfs|dfs|efs)",

x = result$pep,

ignore.case = TRUE)

Tabulate

table(result$pep_is_efs)

Plot

library(ggplot2)

ggplot(data = result,

aes(x = nsubj,

y = pep_is_response)) +

geom_boxplot() +

scale_x_log10()

ggsave("vignettes/boxpep.png", width = 6, height = 4)

12

Figure 5: BoxPEP

13

Investigational or authorised medicinal product?

The information about the status of authorisation (licensing) of a medicine used in a trial is record in
EUCTR; a corresponding field in CTGOV is not known. The status is in the tree starting from the dimp

element.

Get results

result <- dbGetFieldsIntoDf(

fields =

c("a1_member_state_concerned",

"n_date_of_competent_authority_decision",

"dimp.d21_imp_to_be_used_in_the_trial_has_a_marketing_authorisation",

"x6_date_on_which_this_record_was_first_entered_in_the_eudract_database",

"f422_in_the_whole_clinical_trial",

"a2_eudract_number"),

con = db)

Note: requested field dimp.d21_imp_to_be_used_in_the_trial_has_a_marketing_authorisation

has subitems dimp, collapsed using ' / '

Find first date of authorisation in EU member state

tmp <- aggregate(

result[["n_date_of_competent_authority_decision"]],

by = list(result[["a2_eudract_number"]]),

FUN = function(x) min(x))

result <- merge(

x = result,

y = tmp,

by.x = "a2_eudract_number",

by.y = "Group.1",

all.x = TRUE)

result[["startdatefirst"]] <- dfMergeTwoVariablesRelevel(

df = result,

colnames = c(

"x",

"x6_date_on_which_this_record_was_first_entered_in_the_eudract_database")

)

Now de-duplicate

result <- result[

result[["_id"]] %in%

dbFindIdsUniqueTrials(

include3rdcountrytrials = FALSE,

con = db),]

How many of the investigational medicinal product(s)

used in the trial are authorised?

number_authorised <- stringi::stri_count(

result[["dimp.d21_imp_to_be_used_in_the_trial_has_a_marketing_authorisation"]],

fixed = "Yes")

table(number_authorised, exclude = "")

result[["any_authorised"]] <- number_authorised > 0

Plot

library(ggplot2)

14

library(scales)

ggplot(

data = result,

aes(

x = startdatefirst,

fill = any_authorised)) +

scale_x_date(

breaks = breaks_width(width = "2 years"),

labels = date_format("%Y")) +

geom_histogram() +

labs(

title = "Neuroblastoma trials in EU",

x = "Year of trial authorisation (or entered in EUCTR)",

y = "Number of trials",

fill = "Medicine\nauthorised?")

ggsave("vignettes/nbtrials.png", width = 6, height = 4)

Figure 6: HistogramNBtrials

Analyses using aggregation pipeline and mapreduce

Here are example of analysis functions that can be run on the MongoDB server, which are fast and do not
consume R resources.

15

Load library for database access

library(mongolite)

Creat R object m to access the

collection created above:

m <- mongo(url = paste0(db[["url"]], "/", db[["db"]]),

collection = db[["collection"]])

Number of records in collection:

m$count()

Number of EUCTR records, using JSON for query:

m$count(query = '{"_id": {"$regex": "[0-9]{4}-[0-9]{6}-[0-9]{2}",

"$options": "i"}}')

Alternative:

m$count(query = '{"ctrname": "EUCTR"}')

Number of CTGOV records:

m$count(query = '{"_id": {"$regex": "NCT[0-9]{8}",

"$options": "i"}}')

Alternative:

m$count(query = '{"ctrname": "CTGOV"}')

The following examples use the aggregation pipeline in MongoDB:

See here for details on mongo's aggregation pipleline:

https://docs.mongodb.org/manual/core/aggregation-pipeline/

To best define regular expressions for analyses,

inspect the field (here, primary_outcome.measure):

Regular expressions ("$regex") are case insensitive ("i")

head(

m$distinct(key = "primary_outcome.measure",

query = '{"_id": {"$regex": "NCT[0-9]{8}", "$options": "i"}}'))

[Example 1.] Total count of PFS, EFS, RFS or DFS

out <- m$aggregate(

Count number of documents in collection that

matches in primary_outcome.measure the

regular expression,

pipeline =

'[{"$match": {"primary_outcome.measure":

{"$regex": "(progression|event|relapse|recurrence|disease)[-]free",

"$options": "i"}}},

{"$group": {"_id": "null", "count": {"$sum": 1}}}]')

out

[Example 2.] Lists records of OS trials with start date

out <- m$aggregate(

pipeline =

16

'[{"$match": {"primary_outcome.measure":

{"$regex": "overall survival", "$options": "i"}}},

{"$project": {"_id": 1, "start_date": 1}}]')

head(out)

_id start_date

1 NCT00793845 August 2008

2 NCT00923351 June 2, 2007

[Example 3.] Count number of trials by number of

study participants in bins of hundreds of participants:

hist <- m$mapreduce(

map = "function(){emit(Math.floor(this.f422_in_the_whole_clinical_trial/100)*100, 1)}",

reduce = "function(id, counts){return Array.sum(counts)}"

)

hist

_id value

1 NaN 195

2 0 74

3 100 35

4 200 4

5 600 1

6 2200 4

7 2700 2

8 3300 4

17

	Preparations
	Find fields / variables of interest
	Data frame from database
	Metadata from data frame
	Simple analysis - dates
	Merge corresponding fields from registers
	Annotations made by user
	Analysing nested fields such as trial results
	Analysing primary endpoints
	Investigational or authorised medicinal product?
	Analyses using aggregation pipeline and mapreduce

