
Package ‘dm’
June 20, 2021

Title Relational Data Models

Version 0.2.3

Date 2021-06-20

Description Provides tools for working with multiple related
tables, stored as data frames or in a relational database. Multiple
tables (data and metadata) are stored in a compound object, which can
then be manipulated with a pipe-friendly syntax.

License MIT + file LICENSE

URL https://cynkra.github.io/dm/, https://github.com/cynkra/dm

BugReports https://github.com/cynkra/dm/issues

Depends R (>= 3.3)

Imports backports, cli (>= 2.2.0), DBI, dplyr (>= 1.0.3), ellipsis,
glue, igraph, lifecycle, magrittr, memoise, methods, pillar,
purrr, rlang (>= 0.4.10), tibble, tidyr (>= 1.0.0), tidyselect
(>= 1.0.1), vctrs (>= 0.3.2)

Suggests brio, covr, crayon, dbplyr, DiagrammeR, DiagrammeRsvg,
digest, duckdb, fansi, keyring, knitr, mockr, nycflights13,
odbc, progress, RMariaDB (>= 1.0.10), rmarkdown, RPostgres,
RSQLite, testthat (>= 3.0.2), tidyverse, withr

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.1.9001

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first zzx-deprecated, flatten, dplyr, filter-dm,
draw-dm, bind, rows-dm

NeedsCompilation no

Author Tobias Schieferdecker [aut],
Kirill Müller [aut, cre] (<https://orcid.org/0000-0002-1416-3412>),
Darko Bergant [aut],

1

https://cynkra.github.io/dm/
https://github.com/cynkra/dm
https://github.com/cynkra/dm/issues
https://orcid.org/0000-0002-1416-3412

2 R topics documented:

Katharina Brunner [ctb],
James Wondrasek [ctb],
energie360° AG [fnd],
cynkra GmbH [fnd, cph]

Maintainer Kirill Müller <krlmlr+r@mailbox.org>

Repository CRAN

Date/Publication 2021-06-20 19:10:02 UTC

R topics documented:
check_key . 3
check_set_equality . 4
check_subset . 5
copy_dm_to . 5
decompose_table . 8
dm . 9
dm_add_fk . 11
dm_add_pk . 13
dm_add_tbl . 14
dm_bind . 15
dm_disambiguate_cols . 16
dm_draw . 17
dm_enum_fk_candidates . 18
dm_examine_constraints . 20
dm_filter . 21
dm_financial . 23
dm_flatten_to_tbl . 23
dm_from_src . 25
dm_get_all_fks . 26
dm_get_all_pks . 27
dm_get_filters . 28
dm_get_referencing_tables . 28
dm_has_pk . 29
dm_is_referenced . 30
dm_join_to_tbl . 30
dm_mutate_tbl . 31
dm_nrow . 32
dm_nycflights13 . 33
dm_paste . 34
dm_ptype . 35
dm_rename . 35
dm_rm_fk . 36
dm_rm_pk . 37
dm_rm_tbl . 38
dm_select . 39
dm_select_tbl . 40
dm_set_colors . 41

check_key 3

dm_zoom_to . 42
dplyr_join . 44
dplyr_table_manipulation . 45
enum_pk_candidates . 47
examine_cardinality . 48
head.zoomed_dm . 50
materialize . 51
pull_tbl . 52
reunite_parent_child . 53
rows-db . 54
rows-dm . 56
rows_truncate . 58
sql_schema_create . 59
sql_schema_drop . 60
sql_schema_exists . 61
sql_schema_list . 61
tidyr_table_manipulation . 62

Index 64

check_key Check if column(s) can be used as keys

Description

check_key() accepts a data frame and, optionally, columns. It throws an error if the specified
columns are NOT a unique key of the data frame. If the columns given in the ellipsis ARE a key,
the data frame itself is returned silently, so that it can be used for piping.

Usage

check_key(.data, ...)

Arguments

.data The data frame whose columns should be tested for key properties.

... The names of the columns to be checked.
One or more unquoted expressions separated by commas. Variable names can
be treated as if they were positions, so you can use expressions like x:y to select
ranges of variables.
The arguments in ... are automatically quoted and evaluated in a context where
column names represent column positions. They also support unquoting and
splicing. See vignette("programming") for an introduction to these concepts.
See select helpers for more details and examples about tidyselect helpers such
as starts_with(), everything(), ...

4 check_set_equality

Value

Returns .data, invisibly, if the check is passed. Otherwise an error is thrown and the reason for it
is explained.

Examples

data <- tibble::tibble(a = c(1, 2, 1), b = c(1, 4, 1), c = c(5, 6, 7))
this is failing:
try(check_key(data, a, b))

this is passing:
check_key(data, a, c)

check_set_equality Check column values for set equality

Description

check_set_equality() is a wrapper of check_subset(). It tests if one value set is a subset of
another and vice versa, i.e., if both sets are the same. If not, it throws an error.

Usage

check_set_equality(t1, c1, t2, c2)

Arguments

t1 The data frame that contains column c1.
c1 The column of t1 that should only contain values that are also present in column

c2 of data frame t2.
t2 The data frame that contains column c2.
c2 The column of t2 that should only contain values that are also present in column

c1 of data frame t1.

Value

Returns t1, invisibly, if the check is passed. Otherwise an error is thrown and the reason for it is
explained.

Examples

data_1 <- tibble::tibble(a = c(1, 2, 1), b = c(1, 4, 1), c = c(5, 6, 7))
data_2 <- tibble::tibble(a = c(1, 2, 3), b = c(4, 5, 6), c = c(7, 8, 9))
this is failing:
try(check_set_equality(data_1, a, data_2, a))

data_3 <- tibble::tibble(a = c(2, 1, 2), b = c(4, 5, 6), c = c(7, 8, 9))
this is passing:
check_set_equality(data_1, a, data_3, a)

check_subset 5

check_subset Check column values for subset

Description

check_subset() tests if the values of the chosen column c1 of data frame t1 are a subset of the
values of column c2 of data frame t2.

Usage

check_subset(t1, c1, t2, c2)

Arguments

t1 The data frame that contains column c1.

c1 The column of t1 that should only contain the values that are also present in
column c2 of data frame t2.

t2 The data frame that contains column c2.

c2 The column of the second data frame that has to contain all values of c1 to avoid
an error.

Value

Returns t1, invisibly, if the check is passed. Otherwise an error is thrown and the reason for it is
explained.

Examples

data_1 <- tibble::tibble(a = c(1, 2, 1), b = c(1, 4, 1), c = c(5, 6, 7))
data_2 <- tibble::tibble(a = c(1, 2, 3), b = c(4, 5, 6), c = c(7, 8, 9))
this is passing:
check_subset(data_1, a, data_2, a)

this is failing:
try(check_subset(data_2, a, data_1, a))

copy_dm_to Copy data model to data source

Description

copy_dm_to() takes a dplyr::src_dbi object or a DBI::DBIConnection object as its first argument
and a dm object as its second argument. The latter is copied to the former. The default is to create
temporary tables, set temporary = FALSE to create permanent tables. Unless set_key_constraints
is FALSE, primary key constraints are set on all databases, and in addition foreign key constraints
are set on MSSQL and Postgres databases.

6 copy_dm_to

Usage

copy_dm_to(
dest,
dm,
...,
types = NULL,
overwrite = NULL,
indexes = NULL,
unique_indexes = NULL,
set_key_constraints = TRUE,
unique_table_names = NULL,
table_names = NULL,
temporary = TRUE,
schema = NULL,
progress = NA,
copy_to = NULL

)

Arguments

dest An object of class "src" or "DBIConnection".

dm A dm object.

... Passed on to dplyr::copy_to() or to the function specified by the copy_to
argument.

overwrite, types, indexes, unique_indexes

Must remain NULL.
set_key_constraints

If TRUE will mirror dm primary and foreign key constraints on a database and
create unique indexes. Set to FALSE if your data model currently does not satisfy
primary or foreign key constraints.

unique_table_names

Deprecated.

table_names Desired names for the tables on dest; the names within the dm remain un-
changed. Can be NULL, a named character vector, a function or a one-sided
formula.
If left NULL (default), the names will be determined automatically depending on
the temporary argument:

1. temporary = TRUE (default): unique table names based on the names of the
tables in the dm are created.

2. temporary = FALSE: the table names in the dm are used as names for the
tables on dest.

If a function or one-sided formula, table_names is converted to a function using
rlang::as_function(). This function is called with the unquoted table names
of the dm object as the only argument. The output of this function is processed
by DBI::dbQuoteIdentifier(), that result should be a vector of identifiers of
the same length as the original table names.

copy_dm_to 7

Use a variant of table_names = ~ DBI::SQL(paste0("schema_name",".",.x))
to specify the same schema for all tables. Use table_names = identity with
temporary = TRUE to avoid giving temporary tables unique names.
If a named character vector, the names of this vector need to correspond to the
table names in the dm, and its values are the desired names on dest. The value
is processed by DBI::dbQuoteIdentifier(), that result should be a vector of
identifiers of the same length as the original table names.
Use qualified names corresponding to your database’s syntax to specify e.g.
database and schema for your tables.

temporary If TRUE, only temporary tables will be created. These tables will vanish when
disconnecting from the database.

schema Name of schema to copy the dm to. If schema is provided, an error will be thrown
if temporary = FALSE or table_names is not NULL.
Not all DBMS are supported.

progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

copy_to By default, dplyr::copy_to() is called to upload the individual tables to the
target data source. This argument allows overriding the standard behavior in
cases when the default does not work as expected, such as spatial data frames or
other tables with special data types. If not NULL, this argument is processed with
rlang::as_function().

Details

No tables will be overwritten; passing overwrite = TRUE to the function will give an error. Types
are determined separately for each table, setting the types argument will also throw an error. The
arguments are included in the signature to avoid passing them via the ... ellipsis.

Value

A dm object on the given src with the same table names as the input dm.

Examples

con <- DBI::dbConnect(RSQLite::SQLite())

Copy to temporary tables, unique table names by default:
temp_dm <- copy_dm_to(

con,
dm_nycflights13(),
set_key_constraints = FALSE

)

Persist, explicitly specify table names:
persistent_dm <- copy_dm_to(

con,
dm_nycflights13(),
temporary = FALSE,

8 decompose_table

table_names = ~ paste0("flights_", .x)
)
dbplyr::remote_name(persistent_dm$planes)

DBI::dbDisconnect(con)

decompose_table Decompose a table into two linked tables

Description

[Questioning]
Perform table surgery by extracting a ’parent table’ from a table, linking the original table and the
new table by a key, and returning both tables.

decompose_table() accepts a data frame, a name for the ’ID column’ that will be newly created,
and the names of the columns that will be extracted into the new data frame.

It creates a ’parent table’, which consists of the columns specified in the ellipsis, and a new ’ID
column’. Then it removes those columns from the original table, which is now called the ’child
table, and adds the ’ID column’.

Usage

decompose_table(.data, new_id_column, ...)

Arguments

.data Data frame from which columns ... are to be extracted.

new_id_column Name of the identifier column (primary key column) for the parent table. A
column of this name is also added in ’child table’.

... The columns to be extracted from the .data.
One or more unquoted expressions separated by commas. You can treat variable
names as if they were positions, so you can use expressions like x:y to select
ranges of variables.
The arguments in ... are automatically quoted and evaluated in a context where
column names represent column positions. They also support unquoting and
splicing. See vignette("programming") for an introduction to those concepts.
See select helpers for more details, and the examples about tidyselect helpers,
such as starts_with(), everything(), ...

Value

A named list of length two:

• entry "child_table": the child table with column new_id_column referring to the same column
in parent_table,

• entry "parent_table": the "lookup table" for child_table.

dm 9

Life cycle

This function is marked "questioning" because it feels more useful when applied to a table in a dm
object.

See Also

Other table surgery functions: reunite_parent_child()

Examples

decomposed_table <- decompose_table(mtcars, new_id, am, gear, carb)
decomposed_table$child_table
decomposed_table$parent_table

dm Data model class

Description

The dm class holds a list of tables and their relationships. It is inspired by datamodelr, and extends
the idea by offering operations to access the data in the tables.

dm() creates a dm object from tbl objects (tibbles or lazy data objects).

new_dm() is a low-level constructor that creates a new dm object.

• If called without arguments, it will create an empty dm.

• If called with arguments, no validation checks will be made to ascertain that the inputs are of
the expected class and internally consistent; use validate_dm() to double-check the returned
object.

dm_get_con() returns the DBI connection for a dm object. This works only if the tables are stored
on a database, otherwise an error is thrown.

dm_get_tables() returns a named list of dplyr tbl objects of a dm object. Filtering expressions are
NOT evaluated at this stage. To get a filtered table, use dm_apply_filters_to_tbl(), to apply
filters to all tables use dm_apply_filters()

is_dm() returns TRUE if the input is of class dm.

as_dm() coerces objects to the dm class

validate_dm() checks the internal consistency of a dm object.

Usage

dm(..., .name_repair = c("check_unique", "unique", "universal", "minimal"))

new_dm(tables = list())

dm_get_con(x)

https://github.com/bergant/datamodelr

10 dm

dm_get_tables(x)

is_dm(x)

as_dm(x)

validate_dm(x)

Arguments

... Tables to add to the dm object. If no names are provided, the tables are auto-
named.

.name_repair Options for name repair. Forwarded as repair to vctrs::vec_as_names().

tables A named list of the tables (tibble-objects, not names), to be included in the dm
object.

x An object.

Details

All lazy tables in a dm object must be stored on the same database server and accessed through the
same connection.

Value

For dm(), new_dm(), as_dm(): A dm object.

For dm_get_con(): The DBI::DBIConnection for dm objects.

For dm_get_tables(): A named list with the tables constituting the dm.

For is_dm(): Boolean, is this object a dm.

For validate_dm(): Returns the dm, invisibly, after finishing all checks.

See Also

• dm_from_src() for connecting to all tables in a database and importing the primary and for-
eign keys

• dm_add_pk() and dm_add_fk() for adding primary and foreign keys

• copy_dm_to() for DB interaction

• dm_draw() for visualization

• dm_join_to_tbl() for flattening

• dm_filter() for filtering

• dm_select_tbl() for creating a dm with only a subset of the tables

• dm_nycflights13() for creating an example dm object

• decompose_table() for table surgery

• check_key() and check_subset() for checking for key properties

• examine_cardinality() for checking the cardinality of the relation between two tables

dm_add_fk 11

Examples

dm(trees, mtcars)
new_dm(list(trees = trees, mtcars = mtcars))
as_dm(list(trees = trees, mtcars = mtcars))

dm_nycflights13()$airports
dm_nycflights13() %>% names()

copy_dm_to(
dbplyr::src_memdb(),
dm_nycflights13()

) %>%
dm_get_con()

dm_nycflights13() %>% dm_get_tables()
dm_nycflights13() %>% dm_get_filters()
dm_nycflights13() %>% validate_dm()
is_dm(dm_nycflights13())
dm_nycflights13()["airports"]
dm_nycflights13()[["airports"]]
dm_nycflights13()$airports

dm_add_fk Add foreign keys

Description

dm_add_fk() marks the specified columns as the foreign key of table table with respect to a key
of table ref_table. Usually the referenced columns are a primary key in ref_table, it is also
possible to specify other columns via the ref_columns argument. If check == TRUE, then it will
first check if the values in columns are a subset of the values of the key in table ref_table.

Usage

dm_add_fk(
dm,
table,
columns,
ref_table,
ref_columns = NULL,
...,
check = FALSE

)

12 dm_add_fk

Arguments

dm A dm object.

table A table in the dm.

columns The columns of table which are to become the foreign key columns that refer-
ence ref_table. To define a compound key, use c(col1,col2).

ref_table The table which table will be referencing.

ref_columns The column(s) of table which are to become the referenced column(s) in ref_table.
By default, the primary key is used. To define a compound key, use c(col1,col2).

... These dots are for future extensions and must be empty.

check Boolean, if TRUE, a check will be performed to determine if the values of columns
are a subset of the values of the key column(s) of ref_table.

Value

An updated dm with an additional foreign key relation.

See Also

Other foreign key functions: dm_enum_fk_candidates(), dm_get_all_fks(), dm_rm_fk()

Examples

nycflights_dm <- dm(
planes = nycflights13::planes,
flights = nycflights13::flights,
weather = nycflights13::weather

)

nycflights_dm %>%
dm_draw()

Create foreign keys:
nycflights_dm %>%

dm_add_pk(planes, tailnum) %>%
dm_add_fk(flights, tailnum, planes) %>%
dm_add_pk(weather, c(origin, time_hour)) %>%
dm_add_fk(flights, c(origin, time_hour), weather) %>%
dm_draw()

Keys can be checked during creation:
try(

nycflights_dm %>%
dm_add_pk(planes, tailnum) %>%
dm_add_fk(flights, tailnum, planes, check = TRUE)

)

dm_add_pk 13

dm_add_pk Add a primary key

Description

dm_add_pk() marks the specified columns as the primary key of the specified table. If check ==
TRUE, then it will first check if the given combination of columns is a unique key of the table. If
force == TRUE, the function will replace an already set key, without altering foreign keys previously
pointing to that primary key.

Usage

dm_add_pk(dm, table, columns, ..., check = FALSE, force = FALSE)

Arguments

dm A dm object.

table A table in the dm.

columns Table columns, unquoted. To define a compound key, use c(col1,col2).

... These dots are for future extensions and must be empty.

check Boolean, if TRUE, a check is made if the combination of columns is a unique key
of the table.

force Boolean, if FALSE (default), an error will be thrown if there is already a primary
key set for this table. If TRUE, a potential old pk is deleted before setting a new
one.

Value

An updated dm with an additional primary key.

See Also

Other primary key functions: dm_get_all_pks(), dm_has_pk(), dm_rm_pk(), enum_pk_candidates()

Examples

nycflights_dm <- dm(
planes = nycflights13::planes,
airports = nycflights13::airports,
weather = nycflights13::weather

)

nycflights_dm %>%
dm_draw()

Create primary keys:

14 dm_add_tbl

nycflights_dm %>%
dm_add_pk(planes, tailnum) %>%
dm_add_pk(airports, faa, check = TRUE) %>%
dm_add_pk(weather, c(origin, time_hour)) %>%
dm_draw()

Keys can be checked during creation:
try(

nycflights_dm %>%
dm_add_pk(planes, manufacturer, check = TRUE)

)

dm_add_tbl Add tables to a dm

Description

Adds one or more new tables to a dm. Existing tables are not overwritten.

Usage

dm_add_tbl(dm, ..., repair = "unique", quiet = FALSE)

Arguments

dm A dm object.

... One or more tables to add to the dm. If no explicit name is given, the name of
the expression is used.

repair Either a string or a function. If a string, it must be one of "check_unique",
"minimal", "unique", or "universal". If a function, it is invoked with a vector
of minimal names and must return minimal names, otherwise an error is thrown.

• Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

• Unique names are unique. A suffix is appended to duplicate names to make
them unique.

• Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique" option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique" criteria.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.

Value

The initial dm with the additional table(s).

dm_bind 15

See Also

dm_mutate_tbl(), dm_rm_tbl()

Examples

dm() %>%
dm_add_tbl(mtcars, flowers = iris)

renaming table names if necessary (depending on the `repair` argument)
dm() %>%

dm_add_tbl(new_tbl = mtcars, new_tbl = iris)

dm_bind Merge several dm

Description

Create a single dm from two or more dm objects.

Usage

dm_bind(..., repair = "check_unique", quiet = FALSE)

Arguments

... dm objects to bind together.

repair Either a string or a function. If a string, it must be one of "check_unique",
"minimal", "unique", or "universal". If a function, it is invoked with a vector
of minimal names and must return minimal names, otherwise an error is thrown.

• Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

• Unique names are unique. A suffix is appended to duplicate names to make
them unique.

• Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique" option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique" criteria.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.

Details

The dm objects have to share the same src. By default table names need to be unique.

16 dm_disambiguate_cols

Value

dm containing the tables and key relations of all dm objects.

Examples

dm_1 <- dm_nycflights13()
dm_2 <- dm(mtcars, iris)
dm_bind(dm_1, dm_2)

dm_disambiguate_cols Resolve column name ambiguities

Description

This function ensures that all columns in a dm have unique names.

Usage

dm_disambiguate_cols(dm, sep = ".", quiet = FALSE)

Arguments

dm A dm object.

sep The character variable that separates the names of the table and the names of the
ambiguous columns.

quiet Boolean. By default, this function lists the renamed columns in a message, pass
TRUE to suppress this message.

Details

The function first checks if there are any column names that are not unique. If there are, those
columns will be assigned new, unique, names by prefixing their existing name with the name of their
table and a separator. Columns that act as primary or foreign keys will not be renamed because only
the foreign key column will remain when two tables are joined, making that column name "unique"
as well.

Value

A dm whose column names are unambiguous.

Examples

dm_nycflights13() %>%
dm_disambiguate_cols()

dm_draw 17

dm_draw Draw a diagram of the data model

Description

dm_draw() uses DiagrammeR to draw diagrams. Use DiagrammeRsvg::export_svg() to convert
the diagram to an SVG file.

Usage

dm_draw(
dm,
rankdir = "LR",
col_attr = NULL,
view_type = c("keys_only", "all", "title_only"),
columnArrows = TRUE,
graph_attrs = "",
node_attrs = "",
edge_attrs = "",
focus = NULL,
graph_name = "Data Model",
...,
column_types = NULL

)

Arguments

dm A dm object.
rankdir Graph attribute for direction (e.g., ’BT’ = bottom –> top).
col_attr Deprecated, use colummn_types instead.
view_type Can be "keys_only" (default), "all" or "title_only". It defines the level of details

for rendering tables (only primary and foreign keys, all columns, or no columns).
columnArrows Edges from columns to columns (default: TRUE).
graph_attrs Additional graph attributes.
node_attrs Additional node attributes.
edge_attrs Additional edge attributes.
focus A list of parameters for rendering (table filter).
graph_name The name of the graph.
... These dots are for future extensions and must be empty.
column_types Set to TRUE to show column types.

Value

An object of class grViz (see also DiagrammeR::grViz()), which, when printed, produces the
output seen in the viewer as a side effect.

18 dm_enum_fk_candidates

See Also

dm_set_colors() for defining the table colors.

Examples

dm_nycflights13() %>%
dm_draw()

dm_nycflights13(cycle = TRUE) %>%
dm_draw(view_type = "title_only")

head(dm_get_available_colors())
length(dm_get_available_colors())

dm_nycflights13() %>%
dm_get_colors()

dm_enum_fk_candidates Foreign key candidates

Description

[Questioning]

Determine which columns would be good candidates to be used as foreign keys of a table, to refer-
ence the primary key column of another table of the dm object.

Usage

dm_enum_fk_candidates(dm, table, ref_table, ...)

enum_fk_candidates(zoomed_dm, ref_table, ...)

Arguments

dm A dm object.

table The table whose columns should be tested for suitability as foreign keys.

ref_table A table with a primary key.

... These dots are for future extensions and must be empty.

zoomed_dm A dm with a zoomed table.

dm_enum_fk_candidates 19

Details

dm_enum_fk_candidates() first checks if ref_table has a primary key set, if not, an error is
thrown.

If ref_table does have a primary key, then a join operation will be tried using that key as the by
argument of join() to match it to each column of table. Attempting to join incompatible columns
triggers an error.

The outcome of the join operation determines the value of the why column in the result:

• an empty value for a column of table that is a suitable foreign key candidate

• the count and percentage of missing matches for a column that is not suitable

• the error message triggered for unsuitable candidates that may include the types of mismatched
columns

enum_fk_candidates() works like dm_enum_fk_candidates() with the zoomed table as table.

Value

A tibble with the following columns:

columns columns of table,

candidate boolean: are these columns a candidate for a foreign key,

why if not a candidate for a foreign key, explanation for for this.

Life cycle

These functions are marked "questioning" because we are not yet sure about the interface, in par-
ticular if we need both dm_enum...() and enum...() variants. Changing the interface later seems
harmless because these functions are most likely used interactively.

See Also

Other foreign key functions: dm_add_fk(), dm_get_all_fks(), dm_rm_fk()

Examples

dm_nycflights13() %>%
dm_enum_fk_candidates(flights, airports)

dm_nycflights13() %>%
dm_zoom_to(flights) %>%
enum_fk_candidates(airports)

20 dm_examine_constraints

dm_examine_constraints

Validate your data model

Description

This function returns a tibble with information about which key constraints are met (is_key = TRUE)
or violated (FALSE). The printing for this object is special, use as_tibble() to print as a regular
tibble.

Usage

dm_examine_constraints(dm, progress = NA)

Arguments

dm A dm object.

progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

Details

For the primary key constraints, it is tested if the values in the respective columns are all unique.
For the foreign key constraints, the tests check if for each foreign key constraint, the values of the
foreign key column form a subset of the values of the referenced column.

Value

A tibble with the following columns:

table the table in the dm,

kind "PK" or "FK",

columns the table columns that define the key,

ref_table for foreign keys, the referenced table,

is_key logical,

problem if is_key = FALSE, the reason for that.

Examples

dm_nycflights13() %>%
dm_examine_constraints()

dm_filter 21

dm_filter Filtering

Description

[Questioning]
Filtering a table of a dm object may affect other tables that are connected to it directly or indirectly
via foreign key relations.

dm_filter() can be used to define filter conditions for tables using syntax that is similar to
dplyr::filter(). These conditions will be stored in the dm, and executed immediately for the
tables that they are referring to.

With dm_apply_filters(), all tables will be updated according to the filter conditions and the
foreign key relations.

dm_apply_filters_to_tbl() retrieves one specific table of the dm that is updated according to the
filter conditions and the foreign key relations.

Usage

dm_filter(dm, table, ...)

dm_apply_filters(dm)

dm_apply_filters_to_tbl(dm, table)

Arguments

dm A dm object.

table A table in the dm.

... Logical predicates defined in terms of the variables in .data, passed on to
dplyr::filter(). Multiple conditions are combined with & or ,. Only the
rows where the condition evaluates to TRUE are kept.
The arguments in ... are automatically quoted and evaluated in the context of the
data frame. They support unquoting and splicing. See vignette("programming",package
= "dplyr") for an introduction to these concepts.

Details

The effect of the stored filter conditions on the tables related to the filtered ones is only evaluated in
one of the following scenarios:

1. Calling dm_apply_filters() or compute() (method for dm objects) on a dm: each filtered
table potentially reduces the rows of all other tables connected to it by foreign key relations
(cascading effect), leaving only the rows with corresponding key values. Tables that are not
connected to any table with an active filter are left unchanged. This results in a new dm class
object without any filter conditions.

22 dm_filter

2. Calling dm_apply_filters_to_tbl(): the remaining rows of the requested table are calcu-
lated by performing a sequence of semi-joins (dplyr::semi_join()) starting from each table
that has been filtered to the requested table (similar to 1. but only for one table).

Several functions of the dm package will throw an error if filter conditions exist when they are
called.

Value

For dm_filter(): an updated dm object (filter executed for given table, and condition stored).

For dm_apply_filters(): an updated dm object (filter effects evaluated for all tables).

For dm_apply_filters_to_tbl(), a table.

Life cycle

These functions are marked "questioning" because it feels wrong to tightly couple filtering with the
data model. On the one hand, an overview of active filters is useful when specifying the base data set
for an analysis in terms of column selections and row filters. However, these filter condition should
be only of informative nature and never affect the results of other operations. We are working
on formalizing the semantics of the underlying operations in order to present them in a cleaner
interface.

Use dm_zoom_to() and dplyr::filter() to filter rows without registering the filter.

Examples

dm_nyc <- dm_nycflights13()
dm_nyc_filtered <-

dm_nycflights13() %>%
dm_filter(airports, name == "John F Kennedy Intl")

dm_apply_filters_to_tbl(dm_nyc_filtered, flights)

dm_nyc_filtered %>%
dm_apply_filters()

If you want to keep only those rows in the parent tables
whose primary key values appear as foreign key values in
`flights`, you can set a `TRUE` filter in `flights`:
dm_nyc %>%

dm_filter(flights, 1 == 1) %>%
dm_apply_filters() %>%
dm_nrow()

note that in this example, the only affected table is
`airports` because the departure airports in `flights` are
only the three New York airports.

dm_nyc %>%
dm_filter(planes, engine %in% c("Reciprocating", "4 Cycle")) %>%

dm_financial 23

compute()

dm_financial Creates a dm object for the Financial data

Description

[Experimental]
dm_financial() creates an example dm object from the tables at https://relational.fit.
cvut.cz/dataset/Financial. The connection is established once per session, subsequent calls
return the same connection.

dm_financial_sqlite() copies the data to a temporary SQLite database. The data is downloaded
once per session, subsequent calls return the same database. The trans table is excluded due to its
size.

Usage

dm_financial()

dm_financial_sqlite()

Value

A dm object.

Examples

dm_financial() %>%
dm_draw()

dm_flatten_to_tbl Flatten a part of a dm into a wide table

Description

dm_flatten_to_tbl() and dm_squash_to_tbl() gather all information of interest in one place in
a wide table. Both functions perform a disambiguation of column names and a cascade of joins.

Usage

dm_flatten_to_tbl(dm, start, ..., join = left_join)

dm_squash_to_tbl(dm, start, ..., join = left_join)

https://relational.fit.cvut.cz/dataset/Financial
https://relational.fit.cvut.cz/dataset/Financial

24 dm_flatten_to_tbl

Arguments

dm A dm object.

start The table from which all outgoing foreign key relations are considered when
establishing a processing order for the joins. An interesting choice could be for
example a fact table in a star schema.

... Unquoted names of the tables to be included in addition to the start table. The
order of the tables here determines the order of the joins. If the argument is
empty, all tables that can be reached will be included. If this includes tables that
are not direct neighbors of start, it will only work with dm_squash_to_tbl()
(given one of the allowed join-methods). tidyselect is supported, see dplyr::select()
for details on the semantics.

join The type of join to be performed, see dplyr::join().

Details

With ... left empty, this function will join together all the tables of your dm object that can be
reached from the start table, in the direction of the foreign key relations (pointing from the child
tables to the parent tables), using the foreign key relations to determine the argument by for the
necessary joins. The result is one table with unique column names. Use the ... argument if you
would like to control which tables should be joined to the start table.

How does filtering affect the result?

Case 1, either no filter conditions are set in the dm, or set only in the part that is unconnected to
the start table: The necessary disambiguations of the column names are performed first. Then all
involved foreign tables are joined to the start table successively, with the join function given in
the join argument.

Case 2, filter conditions are set for at least one table that is connected to start: First, disambigua-
tion will be performed if necessary. The start table is then calculated using tbl(dm,"start").
This implies that the effect of the filters on this table is taken into account. For right_join,
full_join and nest_join, an error is thrown if any filters are set because filters will not af-
fect the right hand side tables and the result will therefore be incorrect in general (calculating the
effects on all RHS-tables would also be time-consuming, and is not supported; if desired, call
dm_apply_filters() first to achieve that effect). For all other join types, filtering only the start
table is enough because the effect is passed on by successive joins.

Mind that calling dm_flatten_to_tbl() with join = right_join and no table order determined
in the ... argument will not lead to a well-defined result if two or more foreign tables are to be
joined to start. The resulting table would depend on the order the tables that are listed in the dm.
Therefore, trying this will result in a warning.

Since join = nest_join() does not make sense in this direction (LHS = child table, RHS = parent
table: for valid key constraints each nested column entry would be a tibble of one row), an error
will be thrown if this method is chosen.

Value

A single table that results from consecutively joining all affected tables to the start table.

dm_from_src 25

See Also

Other flattening functions: dm_join_to_tbl()

Examples

dm_nycflights13() %>%
dm_select_tbl(-weather) %>%
dm_flatten_to_tbl(flights)

dm_from_src Load a dm from a remote data source

Description

dm_from_src() creates a dm from some or all tables in a src (a database or an environment) or
which are accessible via a DBI-Connection. For Postgres and SQL Server databases, primary and
foreign keys are imported from the database.

Usage

dm_from_src(src = NULL, table_names = NULL, learn_keys = NULL, ...)

Arguments

src A dplyr table source object or a DBI::DBIConnection object is accepted.

table_names A character vector of the names of the tables to include.

learn_keys [Experimental]
Set to TRUE to query the definition of primary and foreign keys from the database.
Currently works only for Postgres and SQL Server databases. The default at-
tempts to query and issues an informative message.

... [Experimental]
Additional parameters for the schema learning query.

• schema: supported for MSSQL (default: "dbo"), Postgres (default: "public"),
and MariaDB/MySQL (default: current database). Learn the tables in a
specific schema (or database for MariaDB/MySQL).

• dbname: supported for MSSQL. Access different databases on the con-
nected MSSQL-server; default: active database.

• table_type: supported for Postgres (default: "BASE TABLE"). Specify the
table type. Options are:
1. "BASE TABLE" for a persistent table (normal table type)
2. "VIEW" for a view
3. "FOREIGN TABLE" for a foreign table
4. "LOCAL TEMPORARY" for a temporary table

26 dm_get_all_fks

Value

A dm object.

Examples

con <- DBI::dbConnect(
RMariaDB::MariaDB(),
username = "guest",
password = "relational",
dbname = "Financial_ijs",
host = "relational.fit.cvut.cz"

)

dm_from_src(con)

DBI::dbDisconnect(con)

dm_get_all_fks Get foreign key constraints

Description

Get a summary of all foreign key relations in a dm.

Usage

dm_get_all_fks(dm, parent_table = NULL, ...)

Arguments

dm A dm object.

parent_table One or more table names, as character vector, to return foreign key information
for. The default NULL returns information for all tables.

... These dots are for future extensions and must be empty.

Value

A tibble with the following columns:

child_table child table,

child_fk_cols foreign key column(s) in child table as list of character vectors,

parent_table parent table,

parent_key_cols key column(s) in parent table as list of character vectors.

dm_get_all_pks 27

See Also

Other foreign key functions: dm_add_fk(), dm_enum_fk_candidates(), dm_rm_fk()

Examples

dm_nycflights13() %>%
dm_get_all_fks()

dm_get_all_pks Get all primary keys of a dm object

Description

dm_get_all_pks() checks the dm object for set primary keys and returns the tables, the respective
primary key columns and their classes.

Usage

dm_get_all_pks(dm, table = NULL, ...)

Arguments

dm A dm object.

table One or more table names, as character vector, to return primary key information
for. The default NULL returns information for all tables.

... These dots are for future extensions and must be empty.

Value

A tibble with the following columns:

table table name,

pk_cols column name(s) of primary key, as list of character vectors.

See Also

Other primary key functions: dm_add_pk(), dm_has_pk(), dm_rm_pk(), enum_pk_candidates()

Examples

dm_nycflights13() %>%
dm_get_all_pks()

28 dm_get_referencing_tables

dm_get_filters Get filter expressions

Description

dm_get_filters() returns the filter expressions that have been applied to a dm object. These filter
expressions are not intended for evaluation, only for information.

Usage

dm_get_filters(x)

Arguments

x An object.

Value

A tibble with the following columns:

table table that was filtered,

filter the filter expression,

zoomed logical, does the filter condition relate to the zoomed table.

dm_get_referencing_tables

Get the names of referencing tables

Description

This function returns the names of all tables that point to the primary key of a table.

Usage

dm_get_referencing_tables(dm, table)

Arguments

dm A dm object.

table A table in the dm.

Value

A character vector of the names of the tables that point to the primary key of table.

dm_has_pk 29

See Also

Other functions utilizing foreign key relations: dm_is_referenced()

Examples

dm_nycflights13() %>%
dm_get_referencing_tables(airports)

dm_nycflights13() %>%
dm_get_referencing_tables(flights)

dm_has_pk Check for primary key

Description

dm_has_pk() checks if a given table has columns marked as its primary key.

Usage

dm_has_pk(dm, table, ...)

Arguments

dm A dm object.

table A table in the dm.

... These dots are for future extensions and must be empty.

Value

A logical value: TRUE if the given table has a primary key, FALSE otherwise.

See Also

Other primary key functions: dm_add_pk(), dm_get_all_pks(), dm_rm_pk(), enum_pk_candidates()

Examples

dm_nycflights13() %>%
dm_has_pk(flights)

dm_nycflights13() %>%
dm_has_pk(planes)

30 dm_join_to_tbl

dm_is_referenced Check foreign key reference

Description

Is a table of a dm referenced by another table?

Usage

dm_is_referenced(dm, table)

Arguments

dm A dm object.

table A table in the dm.

Value

TRUE if at least one foreign key exists that points to the primary key of the table argument, FALSE
otherwise.

See Also

Other functions utilizing foreign key relations: dm_get_referencing_tables()

Examples

dm_nycflights13() %>%
dm_is_referenced(airports)

dm_nycflights13() %>%
dm_is_referenced(flights)

dm_join_to_tbl Join two tables

Description

A join of a desired type is performed between table_1 and table_2. The two tables need to be di-
rectly connected by a foreign key relation. Since this function is a wrapper around dm_flatten_to_tbl(),
the LHS of the join will always be a "child table", i.e. a table referencing the other table.

Usage

dm_join_to_tbl(dm, table_1, table_2, join = left_join)

dm_mutate_tbl 31

Arguments

dm A dm object.

table_1 One of the tables involved in the join.

table_2 The second table of the join.

join The type of join to be performed, see dplyr::join().

Value

The resulting table of the join.

See Also

Other flattening functions: dm_flatten_to_tbl()

Examples

dm_nycflights13() %>%
dm_join_to_tbl(airports, flights)

same result is achieved with:
dm_nycflights13() %>%

dm_join_to_tbl(flights, airports)

this gives an error, because the tables are not directly linked to each other:
try(

dm_nycflights13() %>%
dm_join_to_tbl(airlines, airports)

)

dm_mutate_tbl Update tables in a dm

Description

[Experimental]
Updates one or more existing tables in a dm. For now, the column names must be identical. This
restriction may be levied optionally in the future.

Usage

dm_mutate_tbl(dm, ...)

Arguments

dm A dm object.

... One or more tables to update in the dm. Must be named.

32 dm_nrow

See Also

dm_add_tbl(), dm_rm_tbl()

Examples

dm_nycflights13() %>%
dm_mutate_tbl(flights = nycflights13::flights[1:3,])

dm_nrow Number of rows

Description

Returns a named vector with the number of rows for each table.

Usage

dm_nrow(dm)

Arguments

dm A dm object.

Value

A named vector with the number of rows for each table.

Examples

dm_nycflights13() %>%
dm_filter(airports, faa %in% c("EWR", "LGA")) %>%
dm_apply_filters() %>%
dm_nrow()

dm_nycflights13 33

dm_nycflights13 Creates a dm object for the nycflights13 data

Description

Creates an example dm object from the tables in nycflights13, along with the references. See ny-
cflights13::flights for a description of the data. As described in nycflights13::planes, the relationship
between the flights table and the planes tables is "weak", it does not satisfy data integrity con-
straints.

Usage

dm_nycflights13(cycle = FALSE, color = TRUE, subset = TRUE, compound = TRUE)

Arguments

cycle Boolean. If FALSE (default), only one foreign key relation (from flights$origin
to airports$faa) between the flights table and the airports table is estab-
lished. If TRUE, a dm object with a double reference between those tables will be
produced.

color Boolean, if TRUE (default), the resulting dm object will have colors assigned to
different tables for visualization with dm_draw().

subset Boolean, if TRUE (default), the flights table is reduced to flights with column
day equal to 10.

compound Boolean, if FALSE, no link will be established between tables flights and
weather, because this requires compound keys.

Value

A dm object consisting of nycflights13 tables, complete with primary and foreign keys and optionally
colored.

Examples

dm_nycflights13() %>%
dm_draw()

34 dm_paste

dm_paste Create R code for a dm object

Description

dm_paste() takes an existing dm and emits the code necessary for its creation.

Usage

dm_paste(dm, select = NULL, ..., tab_width = 2, options = NULL, path = NULL)

Arguments

dm A dm object.

select Deprecated, see "select" in the options argument.

... Must be empty.

tab_width Indentation width for code from the second line onwards

options Formatting options. A character vector containing some of:

• "tables": tibble() calls for empty table definitions derived from dm_ptype(),
overrides "select".

• "select": dm_select() statements for columns that are part of the dm.
• "keys": dm_add_pk() and dm_add_fk() statements for adding keys.
• "color": dm_set_colors() statements to set color.
• "all": All options above except "select"

Default NULL is equivalent to c("keys","color")

path Output file, if NULL the code is printed to the console.

Details

The code emitted by the function reproduces the structure of the dm object. The options argument
controls the level of detail: keys, colors, table definitions. Data in the tables is never included, see
dm_ptype() for the underlying logic.

Value

Code for producing the prototype of the given dm.

Examples

dm() %>%
dm_paste()

dm_nycflights13() %>%
dm_paste()

dm_ptype 35

dm_nycflights13() %>%
dm_paste(options = "select")

dm_ptype Prototype for a dm object

Description

[Experimental]

The prototype contains all tables, all primary and foreign keys, but no data. All tables are truncated
and converted to zero-row tibbles. Column names retain their type. This is useful for performing
creation and population of a database in separate steps.

Usage

dm_ptype(dm)

Arguments

dm A dm object.

Examples

dm_financial() %>%
dm_ptype()

dm_financial() %>%
dm_ptype() %>%
dm_nrow()

dm_rename Rename columns

Description

Rename the columns of your dm using syntax that is similar to dplyr::rename().

Usage

dm_rename(dm, table, ...)

36 dm_rm_fk

Arguments

dm A dm object.
table A table in the dm.
... One or more unquoted expressions separated by commas. You can treat variable

names as if they were positions, and use expressions like x:y to select the ranges
of variables.
Use named arguments, e.g. new_name = old_name, to rename the selected vari-
ables.
The arguments in ... are automatically quoted and evaluated in a context where
column names represent column positions. They also support unquoting and
splicing. See vignette("programming",package = "dplyr") for an introduc-
tion to those concepts.
See select helpers for more details, and the examples about tidyselect helpers,
such as starts_with(), everything(), ...

Details

If key columns are renamed, then the meta-information of the dm is updated accordingly.

Value

An updated dm with the columns of table renamed.

Examples

dm_nycflights13() %>%
dm_rename(airports, code = faa, altitude = alt)

dm_rm_fk Remove foreign keys

Description

dm_rm_fk() can remove either one reference between two tables, or multiple references at once
(with a message). An error is thrown if no matching foreign key is found.

Usage

dm_rm_fk(
dm,
table = NULL,
columns = NULL,
ref_table = NULL,
ref_columns = NULL,
...

)

dm_rm_pk 37

Arguments

dm A dm object.

table A table in the dm. Pass NULL to remove all matching keys.

columns Table columns, unquoted. To refer to a compound key, use c(col1,col2). Pass
NULL (the default) to remove all matching keys.

ref_table The table referenced by the table argument. Pass NULL to remove all matching
keys.

ref_columns The columns of table that should no longer be referencing the primary key of
ref_table. To refer to a compound key, use c(col1,col2).

... These dots are for future extensions and must be empty.

Value

An updated dm without the matching foreign key relation(s).

See Also

Other foreign key functions: dm_add_fk(), dm_enum_fk_candidates(), dm_get_all_fks()

Examples

dm_nycflights13(cycle = TRUE) %>%
dm_rm_fk(flights, dest, airports) %>%
dm_draw()

dm_rm_pk Remove a primary key

Description

dm_rm_pk() removes one or more primary keys from a table and leaves the dm object otherwise
unaltered. An error is thrown if no private key matches the selection criteria. If the selection criteria
are ambiguous, a message with unambiguous replacement code is shown. Foreign keys are never
removed.

Usage

dm_rm_pk(dm, table = NULL, columns = NULL, ..., fail_fk = TRUE)

38 dm_rm_tbl

Arguments

dm A dm object.

table A table in the dm. Pass NULL to remove all matching keys.

columns Table columns, unquoted. To refer to a compound key, use c(col1,col2). Pass
NULL (the default) to remove all matching keys.

... These dots are for future extensions and must be empty.

fail_fk Boolean: if TRUE (default), will throw an error if there are foreign keys address-
ing the primary key that is to be removed.

Value

An updated dm without the indicated primary key(s).

See Also

Other primary key functions: dm_add_pk(), dm_get_all_pks(), dm_has_pk(), enum_pk_candidates()

Examples

dm_nycflights13() %>%
dm_rm_pk(airports, fail_fk = FALSE) %>%
dm_draw()

dm_rm_tbl Remove tables

Description

Removes one or more tables from a dm.

Usage

dm_rm_tbl(dm, ...)

Arguments

dm A dm object.

... One or more unquoted table names to remove from the dm. tidyselect is sup-
ported, see dplyr::select() for details on the semantics.

Value

The dm without the removed table(s) that were present in the initial dm.

dm_select 39

See Also

dm_add_tbl(), dm_select_tbl()

Examples

dm_nycflights13() %>%
dm_rm_tbl(airports)

dm_select Select columns

Description

Select columns of your dm using syntax that is similar to dplyr::select().

Usage

dm_select(dm, table, ...)

Arguments

dm A dm object.

table A table in the dm.

... One or more unquoted expressions separated by commas. You can treat variable
names as if they were positions, and use expressions like x:y to select the ranges
of variables.
Use named arguments, e.g. new_name = old_name, to rename the selected vari-
ables.
The arguments in ... are automatically quoted and evaluated in a context where
column names represent column positions. They also support unquoting and
splicing. See vignette("programming",package = "dplyr") for an introduc-
tion to those concepts.
See select helpers for more details, and the examples about tidyselect helpers,
such as starts_with(), everything(), ...

Details

If key columns are renamed, then the meta-information of the dm is updated accordingly. If key
columns are removed, then all related relations are dropped as well.

Value

An updated dm with the columns of table reduced and/or renamed.

40 dm_select_tbl

Examples

dm_nycflights13() %>%
dm_select(airports, code = faa, altitude = alt)

dm_select_tbl Select and rename tables

Description

dm_select_tbl() keeps the selected tables and their relationships, optionally renaming them.

dm_rename_tbl() renames tables.

Usage

dm_select_tbl(dm, ...)

dm_rename_tbl(dm, ...)

Arguments

dm A dm object.

... One or more table names of the tables of the dm object. tidyselect is sup-
ported, see dplyr::select() for details on the semantics.

Value

The input dm with tables renamed or removed.

See Also

dm_rm_tbl()

Examples

dm_nycflights13() %>%
dm_select_tbl(airports, fl = flights)

dm_nycflights13() %>%
dm_rename_tbl(ap = airports, fl = flights)

dm_set_colors 41

dm_set_colors Color in database diagrams

Description

dm_set_colors() allows to define the colors that will be used to display the tables of the data
model with dm_draw(). The colors can either be either specified with hex color codes or using the
names of the built-in R colors. An overview of the colors corresponding to the standard color names
can be found at the bottom of http://rpubs.com/krlmlr/colors.

dm_get_colors() returns the colors defined for a data model.

dm_get_available_colors() returns an overview of the names of the available colors These are
the standard colors also returned by grDevices::colors() plus a default table color with the name
"default".

Usage

dm_set_colors(dm, ...)

dm_get_colors(dm)

dm_get_available_colors()

Arguments

dm A dm object.

... Colors to set in the form color = table. Allowed colors are all hex coded colors
(quoted) and the color names from dm_get_available_colors(). tidyselect
is supported, see dplyr::select() for details on the semantics.

Value

For dm_set_colors(): the updated data model.

For dm_get_colors(), a two-column tibble with one row per table.

For dm_get_available_colors(), a vector with the available colors.

Examples

dm_nycflights13(color = FALSE) %>%
dm_set_colors(
darkblue = starts_with("air"),
"#5986C4" = flights

) %>%
dm_draw()

Splicing is supported:

http://rpubs.com/krlmlr/colors

42 dm_zoom_to

nyc_cols <-
dm_nycflights13() %>%
dm_get_colors()

nyc_cols

dm_nycflights13(color = FALSE) %>%
dm_set_colors(!!!nyc_cols) %>%
dm_draw()

dm_zoom_to Mark table for manipulation

Description

Zooming to a table of a dm allows for the use of many dplyr-verbs directly on this table, while
retaining the context of the dm object.

dm_zoom_to() zooms to the given table.

dm_update_zoomed() overwrites the originally zoomed table with the manipulated table. The filter
conditions for the zoomed table are added to the original filter conditions.

dm_insert_zoomed() adds a new table to the dm.

dm_discard_zoomed() discards the zoomed table and returns the dm as it was before zooming.

Please refer to vignette("tech-db-zoom",package = "dm") for a more detailed introduction.

Usage

dm_zoom_to(dm, table)

dm_insert_zoomed(dm, new_tbl_name = NULL, repair = "unique", quiet = FALSE)

dm_update_zoomed(dm)

dm_discard_zoomed(dm)

Arguments

dm A dm object.

table A table in the dm.

new_tbl_name Name of the new table.

repair Either a string or a function. If a string, it must be one of "check_unique",
"minimal", "unique", or "universal". If a function, it is invoked with a vector
of minimal names and must return minimal names, otherwise an error is thrown.

• Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

dm_zoom_to 43

• Unique names are unique. A suffix is appended to duplicate names to make
them unique.

• Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique" option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique" criteria.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.

Details

Whenever possible, the key relations of the original table are transferred to the resulting table when
using dm_insert_zoomed() or dm_update_zoomed().

Functions from dplyr that are supported for a zoomed_dm: group_by(), summarise(), mutate(),
transmute(), filter(), select(), rename() and ungroup(). You can use these functions just
like you would with a normal table.

Calling filter() on a zoomed dm is different from calling dm_filter(): only with the latter, the
filter expression is added to the list of table filters stored in the dm.

Furthermore, different join()-variants from dplyr are also supported, e.g. left_join() and
semi_join(). (Support for nest_join() is planned.) The join-methods for zoomed_dm infer the
columns to join by from the primary and foreign keys, and have an extra argument select that
allows choosing the columns of the RHS table.

And – last but not least – also the tidyr-functions unite() and separate() are supported for
zoomed_dm.

Value

For dm_zoom_to(): A zoomed_dm object.

For dm_insert_zoomed(), dm_update_zoomed() and dm_discard_zoomed(): A dm object.

Examples

flights_zoomed <- dm_zoom_to(dm_nycflights13(), flights)

flights_zoomed

flights_zoomed_transformed <-
flights_zoomed %>%
mutate(am_pm_dep = ifelse(dep_time < 1200, "am", "pm")) %>%
`by`-argument of `left_join()` can be explicitly given
otherwise the key-relation is used
left_join(airports) %>%
select(year:dep_time, am_pm_dep, everything())

flights_zoomed_transformed

44 dplyr_join

replace table `flights` with the zoomed table
flights_zoomed_transformed %>%

dm_update_zoomed()

insert the zoomed table as a new table
flights_zoomed_transformed %>%

dm_insert_zoomed("extended_flights") %>%
dm_draw()

discard the zoomed table
flights_zoomed_transformed %>%

dm_discard_zoomed()

dplyr_join dplyr join methods for zoomed dm objects

Description

Use these methods without the ’.zoomed_dm’ suffix (see examples).

Usage

S3 method for class 'zoomed_dm'
left_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'zoomed_dm'
inner_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'zoomed_dm'
full_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'zoomed_dm'
right_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'zoomed_dm'
semi_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

S3 method for class 'zoomed_dm'
anti_join(x, y, by = NULL, copy = NULL, suffix = NULL, select = NULL, ...)

Arguments

x, y tbls to join. x is the zoomed_dm and y is another table in the dm.

by If left NULL (default), the join will be performed by via the foreign key relation
that exists between the originally zoomed table (now x) and the other table (y).
If you provide a value (for the syntax see dplyr::join), you can also join tables
that are not connected in the dm.

dplyr_table_manipulation 45

copy Disabled, since all tables in a dm are by definition on the same src.

suffix Disabled, since columns are disambiguated automatically if necessary, changing
the column names to table_name.column_name.

select Select a subset of the RHS-table’s columns, the syntax being select = c(col_1,col_2,col_3)
(unquoted or quoted). This argument is specific for the join-methods for zoomed_dm.
The table’s by column(s) are automatically added if missing in the selection.

... see dplyr::join

Examples

flights_dm <- dm_nycflights13()
dm_zoom_to(flights_dm, flights) %>%

left_join(airports, select = c(faa, name))

this should illustrate that tables don't necessarily need to be connected
dm_zoom_to(flights_dm, airports) %>%

semi_join(airlines, by = "name")

dplyr_table_manipulation

dplyr table manipulation methods for zoomed dm objects

Description

Use these methods without the ’.zoomed_dm’ suffix (see examples).

Usage

S3 method for class 'zoomed_dm'
filter(.data, ...)

S3 method for class 'zoomed_dm'
mutate(.data, ...)

S3 method for class 'zoomed_dm'
transmute(.data, ...)

S3 method for class 'zoomed_dm'
select(.data, ...)

S3 method for class 'zoomed_dm'
rename(.data, ...)

S3 method for class 'zoomed_dm'
distinct(.data, ..., .keep_all = FALSE)

46 dplyr_table_manipulation

S3 method for class 'zoomed_dm'
arrange(.data, ...)

S3 method for class 'zoomed_dm'
slice(.data, ..., .keep_pk = NULL)

S3 method for class 'zoomed_dm'
group_by(.data, ...)

S3 method for class 'zoomed_dm'
ungroup(x, ...)

S3 method for class 'zoomed_dm'
summarise(.data, ...)

S3 method for class 'zoomed_dm'
count(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

S3 method for class 'zoomed_dm'
tally(x, ...)

S3 method for class 'zoomed_dm'
pull(.data, var = -1, ...)

S3 method for class 'zoomed_dm'
compute(x, ...)

Arguments

.data object of class zoomed_dm

... see corresponding function in package dplyr or tidyr

.keep_all For distinct.zoomed_dm(): see dplyr::distinct

.keep_pk For slice.zoomed_dm: Logical, if TRUE, the primary key will be retained during
this transformation. If FALSE, it will be dropped. By default, the value is NULL,
which causes the function to issue a message in case a primary key is available
for the zoomed table. This argument is specific for the slice.zoomed_dm()
method.

x For ungroup.zoomed_dm: object of class zoomed_dm

wt <data-masking> Frequency weights. Can be NULL or a variable:

enum_pk_candidates 47

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will error,
and require you to specify the name.

.drop For count(): if FALSE will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data). Deprecated in add_count() since it didn’t
actually affect the output.

var A variable specified as:

• a literal variable name
• a positive integer, giving the position counting from the left
• a negative integer, giving the position counting from the right.

The default returns the last column (on the assumption that’s the column you’ve
created most recently).
This argument is taken by expression and supports quasiquotation (you can un-
quote column names and column locations).

Examples

zoomed <- dm_nycflights13() %>%
dm_zoom_to(flights) %>%
group_by(month) %>%
arrange(desc(day)) %>%
summarize(avg_air_time = mean(air_time, na.rm = TRUE))

zoomed
dm_insert_zoomed(zoomed, new_tbl_name = "avg_air_time_per_month")

enum_pk_candidates Primary key candidate

Description

[Questioning]
enum_pk_candidates() checks for each column of a table if the column contains only unique
values, and is thus a suitable candidate for a primary key of the table.

dm_enum_pk_candidates() performs these checks for a table in a dm object.

Usage

enum_pk_candidates(table, ...)

dm_enum_pk_candidates(dm, table, ...)

48 examine_cardinality

Arguments

table A table in the dm.

... These dots are for future extensions and must be empty.

dm A dm object.

Value

A tibble with the following columns:

columns columns of table,

candidate boolean: are these columns a candidate for a primary key,

why if not a candidate for a primary key column, explanation for this.

Life cycle

These functions are marked "questioning" because we are not yet sure about the interface, in par-
ticular if we need both dm_enum...() and enum...() variants. Changing the interface later seems
harmless because these functions are most likely used interactively.

See Also

Other primary key functions: dm_add_pk(), dm_get_all_pks(), dm_has_pk(), dm_rm_pk()

Examples

nycflights13::flights %>%
enum_pk_candidates()

dm_nycflights13() %>%
dm_enum_pk_candidates(airports)

examine_cardinality Check table relations

Description

All check_cardinality_?_?() functions test the following conditions:

1. Is pk_column is a unique key for parent_table?

2. Is the set of values in fk_column of child_table a subset of the set of values of pk_column?

3. Does the relation between the two tables of the data model meet the cardinality requirements?

examine_cardinality() also checks the first two points and subsequently determines the type of
cardinality.

examine_cardinality 49

Usage

check_cardinality_0_n(parent_table, pk_column, child_table, fk_column)

check_cardinality_1_n(parent_table, pk_column, child_table, fk_column)

check_cardinality_1_1(parent_table, pk_column, child_table, fk_column)

check_cardinality_0_1(parent_table, pk_column, child_table, fk_column)

examine_cardinality(parent_table, pk_column, child_table, fk_column)

Arguments

parent_table Data frame.

pk_column Column of parent_table that has to be one of its unique keys.

child_table Data frame.

fk_column Column of child_table that has to be a foreign key to pk_column in parent_table.

Details

All cardinality-functions accept a parent table (data frame), a column name of this table, a child ta-
ble, and a column name of the child table. The given column of the parent table has to be one of
its unique keys (no duplicates are allowed). Furthermore, in all cases, the set of values of the child
table’s column has to be a subset of the set of values of the parent table’s column.

The cardinality specifications 0_n, 1_n, 0_1, 1_1 refer to the expected relation that the child table
has with the parent table. The numbers 0, 1 and n refer to the number of values in the column of
the child table that correspond to each value of the column of the parent table. n means "more than
one" in this context, with no upper limit.
0_n means, that each value of the pk_column has at least 0 and at most n corresponding values in
the column of the child table (which translates to no further restrictions).
1_n means, that each value of the pk_column has at least 1 and at most n corresponding values in
the column of the child table. This means that there is a "surjective" mapping from the child table
to the parent table w.r.t. the specified columns, i.e. for each parent table column value there exists
at least one equal child table column value.
0_1 means, that each value of the pk_column has at least 0 and at most 1 corresponding values in
the column of the child table. This means that there is a "injective" mapping from the child table to
the parent table w.r.t. the specified columns, i.e. no parent table column value is addressed multiple
times. But not all of the parent table column values have to be referred to.
1_1 means, that each value of the pk_column has exactly 1 corresponding value in the column of the
child table. This means that there is a "bijective" ("injective" AND "surjective") mapping between
the child table and the parent table w.r.t. the specified columns, i.e. the sets of values of the two
columns are equal and there are no duplicates in either of them.

Finally, examine_cardinality() tests for and returns the nature of the relationship (injective,
surjective, bijective, or none of these) between the two given columns. If either pk_column is
not a unique key of parent_table or the values of fk_column are not a subset of the values in
pk_column, the requirements for a cardinality test is not fulfilled. No error will be thrown, but the
result will contain the information which prerequisite was violated.

50 head.zoomed_dm

Value

For check_cardinality_?_?(): Functions return parent_table, invisibly, if the check is passed, to
support pipes. Otherwise an error is thrown and the reason for it is explained.

For examine_cardinality(): Returns a character variable specifying the type of relationship be-
tween the two columns.

Examples

d1 <- tibble::tibble(a = 1:5)
d2 <- tibble::tibble(c = c(1:5, 5))
d3 <- tibble::tibble(c = 1:4)
This does not pass, `c` is not unique key of d2:
try(check_cardinality_0_n(d2, c, d1, a))

This passes, multiple values in d2$c are allowed:
check_cardinality_0_n(d1, a, d2, c)

This does not pass, injectivity is violated:
try(check_cardinality_1_1(d1, a, d2, c))

This passes:
check_cardinality_0_1(d1, a, d3, c)

Returns the kind of cardinality
examine_cardinality(d1, a, d2, c)

head.zoomed_dm utils table manipulation methods for zoomed_dm objects

Description

Extract the first or last rows from a table. Use these methods without the ’.zoomed_dm’ suffix (see
examples). The methods for regular dm objects extract the first or last tables.

Usage

S3 method for class 'zoomed_dm'
head(x, n = 6L, ...)

S3 method for class 'zoomed_dm'
tail(x, n = 6L, ...)

Arguments

x object of class zoomed_dm

materialize 51

n an integer vector of length up to dim(x) (or 1, for non-dimensioned objects).
Values specify the indices to be selected in the corresponding dimension (or
along the length) of the object. A positive value of n[i] includes the first/last
n[i] indices in that dimension, while a negative value excludes the last/first
abs(n[i]), including all remaining indices. NA or non-specified values (when
length(n) < length(dim(x))) select all indices in that dimension. Must con-
tain at least one non-missing value.

... arguments to be passed to or from other methods.

Details

see manual for the corresponding functions in utils.

Value

A zoomed_dm object.

Examples

zoomed <- dm_nycflights13() %>%
dm_zoom_to(flights) %>%
head(4)

zoomed
dm_insert_zoomed(zoomed, new_tbl_name = "head_flights")

materialize Materialize

Description

compute() materializes all tables in a dm to new (temporary or permanent) tables on the database.

collect() downloads the tables in a dm object as local tibbles.

Usage

S3 method for class 'dm'
compute(x, ...)

S3 method for class 'dm'
collect(x, ..., progress = NA)

Arguments

x A dm.
... Passed on to compute().
progress Whether to display a progress bar, if NA (the default) hide in non-interactive

mode, show in interactive mode. Requires the ’progress’ package.

52 pull_tbl

Details

Called on a dm object, these methods create a copy of all tables in the dm. Depending on the size of
your data this may take a long time.

Value

A dm object of the same structure as the input.

Examples

financial <- dm_financial_sqlite()

financial %>%
pull_tbl(districts) %>%
dbplyr::remote_name()

compute() copies the data to new tables:
financial %>%

compute() %>%
pull_tbl(districts) %>%
dbplyr::remote_name()

collect() returns a local dm:
financial %>%

collect() %>%
pull_tbl(districts) %>%
class()

pull_tbl Retrieve a table

Description

This function has methods for both dm classes:

1. With pull_tbl.dm() you can chose which table of the dm you want to retrieve.

2. With pull_tbl.zoomed_dm() you will retrieve the zoomed table in the current state.

Usage

pull_tbl(dm, table)

Arguments

dm A dm object.

table One unquoted table name for pull_tbl.dm(), ignored for pull_tbl.zoomed_dm().

reunite_parent_child 53

Value

The requested table

Examples

For an unzoomed dm you need to specify the table to pull:
dm_nycflights13() %>%

pull_tbl(airports)

If zoomed, pulling detaches the zoomed table from the dm:
dm_nycflights13() %>%

dm_zoom_to(airports) %>%
pull_tbl()

reunite_parent_child Merge two tables that are linked by a foreign key relation

Description

[Questioning]
Perform table fusion by combining two tables by a common (key) column, and then removing this
column.

reunite_parent_child(): After joining the two tables by the column id_column, this column
will be removed. The transformation is roughly the inverse of what decompose_table() does.

reunite_parent_child_from_list(): After joining the two tables by the column id_column,
id_column is removed.

This function is almost exactly the inverse of decompose_table() (the order of the columns is not
retained, and the original row names are lost).

Usage

reunite_parent_child(child_table, parent_table, id_column)

reunite_parent_child_from_list(list_of_parent_child_tables, id_column)

Arguments

child_table Table (possibly created by decompose_table()) that references parent_table

parent_table Table (possibly created by decompose_table()).

id_column Identical name of referencing / referenced column in child_table/parent_table.
list_of_parent_child_tables

Cf arguments child_table and parent_table from reunite_parent_child(),
but both in a named list (as created by decompose_table()).

54 rows-db

Value

A wide table produced by joining the two given tables.

Life cycle

These functions are marked "questioning" because they feel more useful when applied to a table in
a dm object.

See Also

Other table surgery functions: decompose_table()

Examples

decomposed_table <- decompose_table(mtcars, new_id, am, gear, carb)
ct <- decomposed_table$child_table
pt <- decomposed_table$parent_table

reunite_parent_child(ct, pt, new_id)
reunite_parent_child_from_list(decomposed_table, new_id)

rows-db Updating database tables

Description

[Experimental]
These methods provide a framework for manipulating individual rows in existing tables. All oper-
ations expect that both existing and new data are presented in two compatible tbl objects.

If y lives on a different data source than x, it can be copied automatically by setting copy = TRUE,
just like for dplyr::left_join().

On mutable backends like databases, these operations manipulate the underlying storage. In contrast
to all other operations, these operations may lead to irreversible changes to the underlying database.
Therefore, in-place updates must be requested explicitly with in_place = TRUE. By default, an
informative message is given. Unlike compute() or copy_to(), no new tables are created.

The sql_rows_*() functions return the SQL used for the corresponding rows_*() function with
in_place = FALSE. y needs to be located on the same data source as x.

Usage

S3 method for class 'tbl_dbi'
rows_insert(x, y, by = NULL, ..., in_place = NULL, copy = FALSE, check = NULL)

S3 method for class 'tbl_dbi'
rows_update(x, y, by = NULL, ..., in_place = NULL, copy = FALSE, check = NULL)

rows-db 55

S3 method for class 'tbl_dbi'
rows_delete(x, y, by = NULL, ..., in_place = NULL, copy = FALSE, check = NULL)

sql_rows_insert(x, y, ...)

sql_rows_update(x, y, by, ...)

sql_rows_delete(x, y, by, ...)

Arguments

x A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.

y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.

by An unnamed character vector giving the key columns. The key values must
uniquely identify each row (i.e. each combination of key values occurs at most
once), and the key columns must exist in both x and y.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.

... Other parameters passed onto methods.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

check Set to TRUE to always check keys, or FALSE to never check. The default is to
check only if in_place is TRUE or NULL.
Currently these checks are no-ops and need yet to be implemented.

Value

A tbl object of the same structure as x. If in_place = TRUE, the underlying data is updated as a side
effect, and x is returned, invisibly.

Examples

data <- dbplyr::memdb_frame(a = 1:3, b = letters[c(1:2, NA)], c = 0.5 + 0:2)
data

try(rows_insert(data, tibble::tibble(a = 4, b = "z")))
rows_insert(data, tibble::tibble(a = 4, b = "z"), copy = TRUE)
rows_update(data, tibble::tibble(a = 2:3, b = "w"), copy = TRUE, in_place = FALSE)

rows_insert(data, dbplyr::memdb_frame(a = 4, b = "z"), in_place = TRUE)

56 rows-dm

data
rows_update(data, dbplyr::memdb_frame(a = 2:3, b = "w"), in_place = TRUE)
data

rows-dm Modifying rows for multiple tables

Description

[Experimental]
These functions provide a framework for updating data in existing tables. Unlike compute(),
copy_to() or copy_dm_to(), no new tables are created on the database. All operations expect that
both existing and new data are presented in two compatible dm objects on the same data source.

The functions make sure that the tables in the target dm are processed in topological order so that
parent (dimension) tables receive insertions before child (fact) tables.

These operations, in contrast to all other operations, may lead to irreversible changes to the under-
lying database. Therefore, in-place operation must be requested explicitly with in_place = TRUE.
By default, an informative message is given.

dm_rows_insert() adds new records via rows_insert(). The primary keys must differ from ex-
isting records. This must be ensured by the caller and might be checked by the underlying database.
Use in_place = FALSE and apply dm_examine_constraints() to check beforehand.

dm_rows_update() updates existing records via rows_update(). Primary keys must match for all
records to be updated.

dm_rows_patch() updates missing values in existing records via rows_patch(). Primary keys
must match for all records to be patched.

dm_rows_upsert() updates existing records and adds new records, based on the primary key, via
rows_upsert().

dm_rows_delete() removes matching records via rows_delete(), based on the primary key. The
order in which the tables are processed is reversed.

dm_rows_truncate() removes all records via rows_truncate(), only for tables in dm. The order
in which the tables are processed is reversed.

Usage

dm_rows_insert(x, y, ..., in_place = NULL, progress = NA)

dm_rows_update(x, y, ..., in_place = NULL, progress = NA)

dm_rows_patch(x, y, ..., in_place = NULL, progress = NA)

dm_rows_upsert(x, y, ..., in_place = NULL, progress = NA)

dm_rows_delete(x, y, ..., in_place = NULL, progress = NA)

dm_rows_truncate(x, y, ..., in_place = NULL, progress = NA)

rows-dm 57

Arguments

x Target dm object.

y dm object with new data.

... These dots are for future extensions and must be empty.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

progress Whether to display a progress bar, if NA (the default) hide in non-interactive
mode, show in interactive mode. Requires the ’progress’ package.

Value

A dm object of the same dm_ptype() as x. If in_place = TRUE, the underlying data is updated as a
side effect, and x is returned, invisibly.

Examples

Establish database connection:
sqlite <- DBI::dbConnect(RSQLite::SQLite())

Entire dataset with all dimension tables populated
with flights and weather data truncated:
flights_init <-

dm_nycflights13() %>%
dm_zoom_to(flights) %>%
filter(FALSE) %>%
dm_update_zoomed() %>%
dm_zoom_to(weather) %>%
filter(FALSE) %>%
dm_update_zoomed()

Target database:
flights_sqlite <- copy_dm_to(sqlite, flights_init, temporary = FALSE)
print(dm_nrow(flights_sqlite))

First update:
flights_jan <-

dm_nycflights13() %>%
dm_select_tbl(flights, weather) %>%
dm_zoom_to(flights) %>%
filter(month == 1) %>%
dm_update_zoomed() %>%
dm_zoom_to(weather) %>%
filter(month == 1) %>%
dm_update_zoomed()

print(dm_nrow(flights_jan))

Copy to temporary tables on the target database:

58 rows_truncate

flights_jan_sqlite <- copy_dm_to(sqlite, flights_jan)

Dry run by default:
dm_rows_insert(flights_sqlite, flights_jan_sqlite)
print(dm_nrow(flights_sqlite))

Explicitly request persistence:
dm_rows_insert(flights_sqlite, flights_jan_sqlite, in_place = TRUE)
print(dm_nrow(flights_sqlite))

Second update:
flights_feb <-

dm_nycflights13() %>%
dm_select_tbl(flights, weather) %>%
dm_zoom_to(flights) %>%
filter(month == 2) %>%
dm_update_zoomed() %>%
dm_zoom_to(weather) %>%
filter(month == 2) %>%
dm_update_zoomed()

Copy to temporary tables on the target database:
flights_feb_sqlite <- copy_dm_to(sqlite, flights_feb)

Explicit dry run:
flights_new <- dm_rows_insert(

flights_sqlite,
flights_feb_sqlite,
in_place = FALSE

)
print(dm_nrow(flights_new))
print(dm_nrow(flights_sqlite))

Check for consistency before applying:
flights_new %>%

dm_examine_constraints()

Apply:
dm_rows_insert(flights_sqlite, flights_feb_sqlite, in_place = TRUE)
print(dm_nrow(flights_sqlite))

DBI::dbDisconnect(sqlite)

rows_truncate Truncate all rows

Description

rows_truncate() removes all rows. This operation corresponds to TRUNCATE in SQL. ... is ig-
nored.

sql_schema_create 59

Usage

rows_truncate(x, ..., in_place = FALSE)

sql_rows_truncate(x, ...)

Arguments

x A data frame or data frame extension (e.g. a tibble).

... Other parameters passed onto methods.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

sql_schema_create Create a schema on a database

Description

sql_schema_create() creates a schema on the database.

Usage

sql_schema_create(dest, schema, ...)

Arguments

dest An object of class "src" or "DBIConnection".

schema Class character or SQL (cf. Details), name of the schema

... Passed on to the individual methods.

Details

Methods are not available for all DBMS.

An error is thrown if a schema of that name already exists.

The argument schema (and dbname for MSSQL) can be provided as SQL objects. Keep in mind, that
in this case it is assumed that they are already correctly quoted as identifiers using DBI::dbQuoteIdentifier().

Additional arguments are:

• dbname: supported for MSSQL. Create a schema in a different database on the connected
MSSQL-server; default: database addressed by dest.

Value

NULL invisibly.

60 sql_schema_drop

See Also

Other schema handling functions: sql_schema_drop(), sql_schema_exists(), sql_schema_list()

sql_schema_drop Remove a schema from a database

Description

sql_schema_drop() deletes a schema from the database. For certain DBMS it is possible to force
the removal of a non-empty schema, see below.

Usage

sql_schema_drop(dest, schema, force = FALSE, ...)

Arguments

dest An object of class "src" or "DBIConnection".

schema Class character or SQL (cf. Details), name of the schema

force Boolean, default FALSE. Set to TRUE to drop a schema and all objects it contains
at once. Currently only supported for Postgres.

... Passed on to the individual methods.

Details

Methods are not available for all DBMS.

An error is thrown if no schema of that name exists.

The argument schema (and dbname for MSSQL) can be provided as SQL objects. Keep in mind, that
in this case it is assumed that they are already correctly quoted as identifiers.

Additional arguments are:

• dbname: supported for MSSQL. Remove a schema from a different database on the connected
MSSQL-server; default: database addressed by dest.

Value

NULL invisibly.

See Also

Other schema handling functions: sql_schema_create(), sql_schema_exists(), sql_schema_list()

sql_schema_exists 61

sql_schema_exists Check for existence of a schema on a database

Description

sql_schema_exists() checks, if a schema exists on the database.

Usage

sql_schema_exists(dest, schema, ...)

Arguments

dest An object of class "src" or "DBIConnection".

schema Class character or SQL, name of the schema

... Passed on to the individual methods.

Details

Methods are not available for all DBMS.

Additional arguments are:

• dbname: supported for MSSQL. Check if a schema exists on a different database on the con-
nected MSSQL-server; default: database addressed by dest.

Value

A boolean: TRUE if schema exists, FALSE otherwise.

See Also

Other schema handling functions: sql_schema_create(), sql_schema_drop(), sql_schema_list()

sql_schema_list List schemas on a database

Description

sql_schema_list() lists the available schemas on the database.

Usage

sql_schema_list(dest, include_default = TRUE, ...)

62 tidyr_table_manipulation

Arguments

dest An object of class "src" or "DBIConnection".

include_default

Boolean, if TRUE (default), also the default schema on the database is included
in the result

... Passed on to the individual methods.

Details

Methods are not available for all DBMS.

Additional arguments are:

• dbname: supported for MSSQL. List schemas on a different database on the connected MSSQL-
server; default: database addressed by dest.

Value

A tibble with the following columns:

schema_name the names of the schemas,

schema_owner the schema owner names.

See Also

Other schema handling functions: sql_schema_create(), sql_schema_drop(), sql_schema_exists()

tidyr_table_manipulation

tidyr table manipulation methods for zoomed dm objects

Description

Use these methods without the ’.zoomed_dm’ suffix (see examples).

Usage

S3 method for class 'zoomed_dm'
unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

S3 method for class 'zoomed_dm'
separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, ...)

tidyr_table_manipulation 63

Arguments

data object of class zoomed_dm

col For unite.zoomed_dm: see tidyr::unite

For separate.zoomed_dm: see tidyr::separate

... For unite.zoomed_dm: see tidyr::unite

For separate.zoomed_dm: see tidyr::separate

sep For unite.zoomed_dm: see tidyr::unite

For separate.zoomed_dm: see tidyr::separate

remove For unite.zoomed_dm: see tidyr::unite

For separate.zoomed_dm: see tidyr::separate

na.rm see tidyr::unite

into see tidyr::separate

Examples

zoom_united <- dm_nycflights13() %>%
dm_zoom_to(flights) %>%
select(year, month, day) %>%
unite("month_day", month, day)

zoom_united
zoom_united %>%

separate(month_day, c("month", "day"))

Index

∗ DB interaction functions
copy_dm_to, 5

∗ flattening functions
dm_flatten_to_tbl, 23
dm_join_to_tbl, 30

∗ foreign key functions
dm_add_fk, 11
dm_enum_fk_candidates, 18
dm_get_all_fks, 26
dm_rm_fk, 36

∗ functions utilizing foreign key relations
dm_get_referencing_tables, 28
dm_is_referenced, 30

∗ primary key functions
dm_add_pk, 13
dm_get_all_pks, 27
dm_has_pk, 29
dm_rm_pk, 37
enum_pk_candidates, 47

∗ schema handling functions
sql_schema_create, 59
sql_schema_drop, 60
sql_schema_exists, 61
sql_schema_list, 61

∗ table surgery functions
decompose_table, 8
reunite_parent_child, 53

anti_join.zoomed_dm (dplyr_join), 44
arrange.zoomed_dm

(dplyr_table_manipulation), 45
as_dm (dm), 9
as_tibble(), 20

check_cardinality_0_1
(examine_cardinality), 48

check_cardinality_0_n
(examine_cardinality), 48

check_cardinality_1_1
(examine_cardinality), 48

check_cardinality_1_n
(examine_cardinality), 48

check_key, 3
check_key(), 10
check_set_equality, 4
check_subset, 5
check_subset(), 10
collect.dm (materialize), 51
compute(), 51, 54, 56
compute.dm (materialize), 51
compute.zoomed_dm

(dplyr_table_manipulation), 45
copy_dm_to, 5
copy_dm_to(), 10, 56
copy_to(), 54, 56
count.zoomed_dm

(dplyr_table_manipulation), 45

DBI::DBIConnection, 5, 10, 25
DBI::dbQuoteIdentifier(), 6, 7, 59
decompose_table, 8, 54
decompose_table(), 10
DiagrammeR::grViz(), 17
DiagrammeRsvg::export_svg(), 17
distinct.zoomed_dm

(dplyr_table_manipulation), 45
dm, 5, 9, 14, 17, 18, 21, 23–27, 30–33, 35,

37–42, 47, 56
dm_add_fk, 11, 19, 27, 37
dm_add_fk(), 10, 34
dm_add_pk, 13, 27, 29, 38, 48
dm_add_pk(), 10, 34
dm_add_tbl, 14
dm_add_tbl(), 32, 39
dm_apply_filters (dm_filter), 21
dm_apply_filters_to_tbl (dm_filter), 21
dm_bind, 15
dm_disambiguate_cols, 16
dm_discard_zoomed (dm_zoom_to), 42
dm_draw, 17

64

INDEX 65

dm_draw(), 10, 41
dm_enum_fk_candidates, 12, 18, 27, 37
dm_enum_pk_candidates

(enum_pk_candidates), 47
dm_examine_constraints, 20
dm_examine_constraints(), 56
dm_filter, 21
dm_filter(), 10, 43
dm_financial, 23
dm_financial_sqlite (dm_financial), 23
dm_flatten_to_tbl, 23, 31
dm_flatten_to_tbl(), 30
dm_from_src, 25
dm_from_src(), 10
dm_get_all_fks, 12, 19, 26, 37
dm_get_all_pks, 13, 27, 29, 38, 48
dm_get_available_colors

(dm_set_colors), 41
dm_get_colors (dm_set_colors), 41
dm_get_con (dm), 9
dm_get_filters, 28
dm_get_referencing_tables, 28, 30
dm_get_tables (dm), 9
dm_has_pk, 13, 27, 29, 38, 48
dm_insert_zoomed (dm_zoom_to), 42
dm_is_referenced, 29, 30
dm_join_to_tbl, 25, 30
dm_join_to_tbl(), 10
dm_mutate_tbl, 31
dm_mutate_tbl(), 15
dm_nrow, 32
dm_nycflights13, 33
dm_nycflights13(), 10
dm_paste, 34
dm_ptype, 35
dm_ptype(), 34, 57
dm_rename, 35
dm_rename_tbl (dm_select_tbl), 40
dm_rm_fk, 12, 19, 27, 36
dm_rm_pk, 13, 27, 29, 37, 48
dm_rm_tbl, 38
dm_rm_tbl(), 15, 32, 40
dm_rows_delete (rows-dm), 56
dm_rows_insert (rows-dm), 56
dm_rows_patch (rows-dm), 56
dm_rows_truncate (rows-dm), 56
dm_rows_update (rows-dm), 56
dm_rows_upsert (rows-dm), 56

dm_select, 39
dm_select(), 34
dm_select_tbl, 40
dm_select_tbl(), 10, 39
dm_set_colors, 41
dm_set_colors(), 18, 34
dm_squash_to_tbl (dm_flatten_to_tbl), 23
dm_update_zoomed (dm_zoom_to), 42
dm_zoom_to, 42
dm_zoom_to(), 22
dplyr::copy_to(), 6, 7
dplyr::distinct, 46
dplyr::filter(), 21, 22
dplyr::join, 44, 45
dplyr::join(), 24, 31
dplyr::left_join(), 54
dplyr::select(), 24, 38, 40, 41
dplyr::semi_join(), 22
dplyr::src_dbi, 5
dplyr_join, 44
dplyr_table_manipulation, 45

enum_fk_candidates
(dm_enum_fk_candidates), 18

enum_pk_candidates, 13, 27, 29, 38, 47
examine_cardinality, 48
examine_cardinality(), 10

filter(), 43
filter.zoomed_dm

(dplyr_table_manipulation), 45
full_join.zoomed_dm (dplyr_join), 44

grDevices::colors(), 41
group_by(), 43
group_by.zoomed_dm

(dplyr_table_manipulation), 45

head.zoomed_dm, 50

inner_join.zoomed_dm (dplyr_join), 44
is_dm (dm), 9

left_join(), 43
left_join.zoomed_dm (dplyr_join), 44

materialize, 51
mutate(), 43
mutate.zoomed_dm

(dplyr_table_manipulation), 45

66 INDEX

nest_join(), 43
new_dm (dm), 9
nycflights13::flights, 33
nycflights13::planes, 33

pull.zoomed_dm
(dplyr_table_manipulation), 45

pull_tbl, 52

quasiquotation, 47

rename(), 43
rename.zoomed_dm

(dplyr_table_manipulation), 45
reunite_parent_child, 9, 53
reunite_parent_child_from_list

(reunite_parent_child), 53
right_join.zoomed_dm (dplyr_join), 44
rlang::as_function(), 6, 7
rows-db, 54
rows-dm, 56
rows_delete(), 56
rows_delete.tbl_dbi (rows-db), 54
rows_insert(), 56
rows_insert.tbl_dbi (rows-db), 54
rows_patch(), 56
rows_truncate, 58
rows_truncate(), 56
rows_update(), 56
rows_update.tbl_dbi (rows-db), 54
rows_upsert(), 56

select(), 43
select.zoomed_dm

(dplyr_table_manipulation), 45
semi_join(), 43
semi_join.zoomed_dm (dplyr_join), 44
separate(), 43
separate.zoomed_dm

(tidyr_table_manipulation), 62
slice.zoomed_dm

(dplyr_table_manipulation), 45
sql_rows_delete (rows-db), 54
sql_rows_insert (rows-db), 54
sql_rows_truncate (rows_truncate), 58
sql_rows_update (rows-db), 54
sql_schema_create, 59, 60–62
sql_schema_drop, 60, 60, 61, 62
sql_schema_exists, 60, 61, 62

sql_schema_list, 60, 61, 61
src, 25
summarise(), 43
summarise.zoomed_dm

(dplyr_table_manipulation), 45

tail.zoomed_dm (head.zoomed_dm), 50
tally.zoomed_dm

(dplyr_table_manipulation), 45
tbl, 9, 54
tibble, 51
tibble(), 34
tidyr::separate, 63
tidyr::unite, 63
tidyr_table_manipulation, 62
transmute(), 43
transmute.zoomed_dm

(dplyr_table_manipulation), 45

ungroup(), 43
ungroup.zoomed_dm

(dplyr_table_manipulation), 45
unite(), 43
unite.zoomed_dm

(tidyr_table_manipulation), 62

validate_dm (dm), 9
vctrs::vec_as_names(), 10

	check_key
	check_set_equality
	check_subset
	copy_dm_to
	decompose_table
	dm
	dm_add_fk
	dm_add_pk
	dm_add_tbl
	dm_bind
	dm_disambiguate_cols
	dm_draw
	dm_enum_fk_candidates
	dm_examine_constraints
	dm_filter
	dm_financial
	dm_flatten_to_tbl
	dm_from_src
	dm_get_all_fks
	dm_get_all_pks
	dm_get_filters
	dm_get_referencing_tables
	dm_has_pk
	dm_is_referenced
	dm_join_to_tbl
	dm_mutate_tbl
	dm_nrow
	dm_nycflights13
	dm_paste
	dm_ptype
	dm_rename
	dm_rm_fk
	dm_rm_pk
	dm_rm_tbl
	dm_select
	dm_select_tbl
	dm_set_colors
	dm_zoom_to
	dplyr_join
	dplyr_table_manipulation
	enum_pk_candidates
	examine_cardinality
	head.zoomed_dm
	materialize
	pull_tbl
	reunite_parent_child
	rows-db
	rows-dm
	rows_truncate
	sql_schema_create
	sql_schema_drop
	sql_schema_exists
	sql_schema_list
	tidyr_table_manipulation
	Index

