parsnip: A Common API to Modeling and Analysis Functions

A common interface is provided to allow users to specify a model without having to remember the different argument names across different functions or computational engines (e.g. 'R', 'Spark', 'Stan', etc).

Version: 0.0.4
Depends: R (≥ 2.10)
Imports: dplyr (≥ 0.8.0.1), rlang (≥ 0.3.1), purrr, utils, tibble (≥ 2.1.1), generics, glue, magrittr, stats, tidyr, globals, prettyunits, vctrs (≥ 0.2.0)
Suggests: testthat, knitr, rmarkdown, survival, keras, xgboost, covr, C50, sparklyr (≥ 1.0.0), earth, glmnet, kernlab, kknn, randomForest, ranger, rpart, MASS, nlme
Published: 2019-11-02
Author: Max Kuhn [aut, cre], Davis Vaughan [aut], RStudio [cph]
Maintainer: Max Kuhn <max at rstudio.com>
BugReports: https://github.com/tidymodels/parsnip/issues
License: GPL-2
URL: https://tidymodels.github.io/parsnip, https://github.com/tidymodels/parsnip
NeedsCompilation: no
Materials: NEWS
CRAN checks: parsnip results

Downloads:

Reference manual: parsnip.pdf
Vignettes: parsnip Basics
Package source: parsnip_0.0.4.tar.gz
Windows binaries: r-devel: parsnip_0.0.4.zip, r-devel-gcc8: parsnip_0.0.4.zip, r-release: parsnip_0.0.4.zip, r-oldrel: parsnip_0.0.4.zip
OS X binaries: r-release: parsnip_0.0.4.tgz, r-oldrel: parsnip_0.0.4.tgz
Old sources: parsnip archive

Reverse dependencies:

Reverse depends: discrim
Reverse imports: tidymodels
Reverse suggests: butcher, forestControl, probably, tidypredict

Linking:

Please use the canonical form https://CRAN.R-project.org/package=parsnip to link to this page.