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spOccupancy-package Single-Species, Multi-Species, and Integrated Spatial Occupancy
Models

Description

Fits single-species, multi-species, and integrated non-spatial and spatial occupancy models using
Markov Chain Monte Carlo (MCMC). Models are fit using Polya-Gamma data augmentation de-
tailed in Polson, Scott, and Windle (2013). Spatial models are fit using either Gaussian processes
or Nearest Neighbor Gaussian Processes (NNGP) for large spatial datasets. Details on NNGPs are
given in Datta, Banerjee, Finley, and Gelfand (2016). Provides functionality for data integration
of multiple single-species occupancy data sets using a joint likelihood framework. Details on data
integration are given in Miller, Pacifici, Sanderlin, and Reich (2019). Details on single-species
and multi-species models are found in MacKenzie et al. (2002) and Dorazio and Royle (2005),
respectively. Details on the package functionality is given in Doser et al. (2022) and Doser, Finley,
Banerjee (2022). See citation('spOccupancy') for how to cite spOccupancy in publications.

Model Fitting Functions

PGOcc fits single-species occupancy models.

spPGOcc fits single-species spatial occupancy models.
msPGOcc fits multi-species occupancy models.
spMsPGOcc fits multi-species spatial occupancy models.

intPGOcc fits single-species integrated occupancy models (i.e., an occupancy model with multiple
data sources).

spIntPGOcc fits single-species integrated spatial occupancy models.
1fJSDM fits a joint species distribution model without imperfect detection.
sfJSDM fits a spatial joint species distribution model without imperfect detection.

1fMsPGOcc fits a joint species distribution model with imperfect detection (i.e., a multi-species
occupancy model with residual species correlations).

sfMsPGOcc fits a spatial joint species distribution model with imperfect detection.

tPGOcc fits a multi-season single-species occupancy model.

stPGOcc fits a multi-season single-species spatial occupancy model.

svcPGBinom fits a single-species spatially-varying coefficient GLM.

svcPGOcc fits a single-species spatially-varying coefficient occupancy model.

svcTPGBinom fits a single-species spatially-varying coefficient multi-season GLM.
svcTPGOcc fits a single-species spatially-varying coefficient multi-season occupancy model.
Goodness of Fit and Model Assessment Functions

ppcOcc performs posterior predictive checks.

waicOcc computes the Widely Applicable Information Criterion for spOccupancy model objects.
Data Simulation Functions

simOcc simulates single-species occupancy data.
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simTOcc simulates single-species multi-season occupancy data.

simBinom simulates detection-nondetection data with perfect detection.

simTBinom simulates multi-season detection-nondetection data with perfect detection.
simMsOcc simulates multi-species occupancy data.

simIntOcc simulates single-species occupancy data from multiple data sources.

All objects from model-fitting functions have support with the summary function for displaying a
concise summary of model results, the fitted function for extracting model fitted values, and the
predict function for predicting occupancy and/or detection across an area of interest.

Author(s)
Jeffrey W. Doser, Andrew O. Finley, Marc Kery

References

Doser, J. W., Finley, A. O., Kery, M., & Zipkin, E. F. (2022). spOccupancy: An R package for
single-species, multi-species, and integrated spatial occupancy models. Methods in Ecology and
Evolution.

Doser, J. W., Finley, A. O., & Banerjee, S. (2022). Joint species distribution models with imperfect
detection for high-dimensional spatial data. arXiv preprint arXiv:2204.02707.

fitted.intPGOcc Extract Model Fitted Values for intPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted single-
species integrated occupancy (intPGOcc) model.

Usage
## S3 method for class 'intPGOcc'
fitted(object, ...)

Arguments
object object of class intPGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class intPGOcc.
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Value

A list comprised of

y.rep.samples A list of three-dimensional numeric arrays of fitted values for each individual
data source for use in Goodness of Fit assessments.

p.samples A list of three-dimensional numeric arrays of detection probability values.
fitted.1fJSDM Extract Model Fitted Values for [fJISDM Object
Description

Method for extracting model fitted values and probability values from a fitted latent factor joint
species distribution model (1fJSDM).

Usage
## S3 method for class '1fJSDM'
fitted(object, ...)

Arguments
object object of class 1f JSDM.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and probability values for fitted
model objects of class 1fJSDM.

Value

A list comprised of:

z.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, and
sites.

psi.samples A three-dimensional numeric array of probability values. Array dimensions cor-

respond to MCMC samples, species, and sites.
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fitted.1fMsPGOcc Extract Model Fitted Values for [fMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted latent factor
multi-species occupancy (1fMsPGOcc) model.

Usage
## S3 method for class '1fMsPGOcc'
fitted(object, ...)

Arguments
object object of class 1fMsPGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class 1fMsPGOcc.

Value
A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.msPGOcc Extract Model Fitted Values for msPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species occupancy (msPGOcc) model.

Usage

## S3 method for class 'msPGOcc'
fitted(object, ...)
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Arguments
object object of class msPGOcc.
currently no additional arguments
Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class msPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.PGOcc Extract Model Fitted Values for PGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted single-species
occupancy (PGOcc) model.

Usage
## S3 method for class 'PGOcc'
fitted(object, ...)

Arguments
object object of class PGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class PGOcc.
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Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, and repli-
cates.

p.samples A three-dimensional numeric array of detection probability values. Array di-
mensions correspond to MCMC samples, sites, and replicates.

fitted.sfJSDM Extract Model Fitted Values for sfISDM Object

Description

Method for extracting model fitted values and probability values from a fitted spatial factor joint
species distribution model (sfJSDM).

Usage
## S3 method for class 'sfJSDM'
fitted(object, ...)

Arguments
object object of class sfIJSDM.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and probability values for fitted
model objects of class sfISDM.

Value

A list comprised of:

z.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, and
sites.

psi.samples A three-dimensional numeric array of probability values. Array dimensions cor-

respond to MCMC samples, species, and sites.
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fitted.sfMsPGOcc Extract Model Fitted Values for sfMsPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted spatial factor
multi-species occupancy (sfMsPGOcc) model.

Usage
## S3 method for class 'sfMsPGOcc'
fitted(object, ...)

Arguments
object object of class sfMsPGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class sfMsPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.spIntPGOcc Extract Model Fitted Values for spIntPGOcc Object

Description

Method for extracting model fitted values and detection probability values from a fitted single-
species integrated spatial occupancy (spIntPGOcc) model.

Usage

## S3 method for class 'spIntPGOcc'
fitted(object, ...)
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Arguments
object object of class spIntPGOcc.
currently no additional arguments
Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class spIntPGOcc.

Value
A list comprised of

y.rep.samples A list of three-dimensional numeric arrays of fitted values for each individual
data source for use in Goodness of Fit assessments.

p.samples A list of three-dimensional numeric arrays of detection probability values.
fitted.spMsPGOcc Extract Model Fitted Values for spMsPGOcc Object
Description

Method for extracting model fitted values and detection probability values from a fitted multi-
species spatial occupancy (spMsPGOcc) model.

Usage
## S3 method for class 'spMsPGOcc'
fitted(object, ...)

Arguments
object object of class spMsPGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probability values
for fitted model objects of class spMsPGOcc.
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Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, species, sites,
and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, species, sites, and replicates.

fitted.spPGOcc Extract Model Fitted Values for spPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted single-species
spatial occupancy (spPGOcc) model.

Usage
## S3 method for class 'spPGOcc'
fitted(object, ...)

Arguments
object object of class spPGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class spPGOcc.

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, and repli-
cates.

p.samples A three-dimensional numeric array of detection probability values. Array di-
mensions correspond to MCMC samples, sites, and replicates.
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fitted.stPGOcc Extract Model Fitted Values for stPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted multi-season
single-species spatial occupancy (stPGOcc) model.

Usage
## S3 method for class 'stPGOcc'
fitted(object, ...)

Arguments
object object of class stPGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class stPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, primary
time periods, and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, sites, primary time periods, and replicates.

fitted.svcPGBinom Extract Model Fitted Values for svcPGBinom Object

Description
Method for extracting model fitted values from a fitted single-species spatially-varying coefficients
binomial model (svcPGBinom).

Usage

## S3 method for class 'svcPGBinom'
fitted(object, ...)
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Arguments
object object of class svcPGBinom.
currently no additional arguments
Details
A method to the generic fitted function to extract fitted values for fitted model objects of class
svcPGBinom.
Value

A two-dimensional matrix of fitted values for use in Goodness of Fit assessments. Dimensions
correspond to MCMC samples and sites.

fitted.svcPGOcc Extract Model Fitted Values for svcPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted single-species
spatially-varying coefficients occupancy (svcPGOcc) model.

Usage
## S3 method for class 'svcPGOcc'
fitted(object, ...)

Arguments
object object of class svcPGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class svcPGOcc.

Value

A list comprised of:

y.rep.samples A three-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, and repli-
cates.

p.samples A three-dimensional numeric array of detection probability values. Array di-
mensions correspond to MCMC samples, sites, and replicates.
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fitted.svcTPGBinom Extract Model Fitted Values for svcTPGBinom Object

Description

Method for extracting model fitted values from a fitted multi-season single-species spatially-varying
coefficients binomial model (svcTPGBinom).

Usage
## S3 method for class 'svcTPGBinom'
fitted(object, ...)

Arguments
object object of class svcTPGBinom.

currently no additional arguments

Details
A method to the generic fitted function to extract fitted values for fitted model objects of class
svcTPGBinom.

Value

A three-dimensional matrix of fitted values for use in Goodness of Fit assessments. Dimensions
correspond to MCMC samples, sites, and primary time periods.

fitted.svcTPGOcc Extract Model Fitted Values for svcTPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted multi-season
single-species spatially-varying coefficients occupancy (svcTPGOcc) model.

Usage
## S3 method for class 'svcTPGOcc'
fitted(object, ...)

Arguments
object object of class svcTPGOcc.

currently no additional arguments
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Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class svcTPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, primary
time periods, and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, sites, primary time periods, and replicates.

fitted.tPGOcc Extract Model Fitted Values for tPGOcc Object

Description

Method for extracting model fitted values and detection probabilities from a fitted multi-season
single-species occupancy (tPGOcc) model.

Usage
## S3 method for class 'tPGOcc'
fitted(object, ...)

Arguments
object object of class tPGOcc.

currently no additional arguments

Details

A method to the generic fitted function to extract fitted values and detection probabilities for fitted
model objects of class tPGOcc.

Value

A list comprised of:

y.rep.samples A four-dimensional numeric array of fitted values for use in Goodness of Fit
assessments. Array dimensions correspond to MCMC samples, sites, primary
time periods, and replicates.

p.samples A four-dimensional numeric array of detection probability values. Array dimen-
sions correspond to MCMC samples, sites, primary time periods, and replicates.
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getSVCSamples Extract spatially-varying coefficient MCMC samples

Description

Function for extracting the full spatially-varying coefficient MCMC samples from an spOccupancy
model object.

Usage
getSVCSamples(object, pred.object, ...)
Arguments
object an object of class svcPGOcc, svcPGBinom, svcTPGOcc, svcTPGBinom.
pred.object a prediction object from a spatially-varying coefficient model fit using spOccu-
pancy. Should be of class predict.svcPGOcc, predict.svcPGBinom, predict.svcTPGOcc,
or predict.svcTPGBinom. If specified, SVC samples are extracted at the pre-
diction locations.
currently no additional arguments
Value

A list of coda: :mcmc objects of the spatially-varying coefficient MCMC samples for all spatially-
varying coefficients estimated in the model (including the intercept if specified). Note these values
correspond to the sum of the estimated spatial and non-spatial effect to give the overall effect of the
covariate at each location. Each element of the list is a two-dimensional matrix where dimensions
correspond to MCMC sample and site. If pred.object is specified, values are returned for the
prediction locations instead of the sampled locations.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,

Examples

set.seed(400)

# Simulate Data -----—-----—-""""———————
J.x <- 8

J.y <=8

J<-J.x*J.y

n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, 2)

p.occ <- length(beta)

alpha <- c(o, 1)

p.det <- length(alpha)

phi <- c(3/ .6, 3/ .8)
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sigma.sq <- c(1.2, 0.7)

svc.cols <- c(1, 2)

dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential',
svc.cols = svc.cols)

Detection-nondetection data

<- dat$y

Occupancy covariates

<- dat$X

Detection covarites

.p <- dat$X.p

Spatial coordinates

coords <- dat$coords

HOX H X < H

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.iter <- n.batch * batch.length

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
sigma.sq.ig = list(a =2, b = 1),
phi.unif = list(a = 3/1, b = 3/.1))

# Initial values

inits.list <- list(alpha = 0, beta = 0,
phi =3/ .5,
sigma.sq = 2,
w = matrix(@, nrow = length(svc.cols), ncol = nrow(X)),
z = apply(y, 1, max, na.rm = TRUE))

# Tuning

tuning.list <- list(phi = 1)

out <- svcPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
svc.cols = c(1, 2),
tuning = tuning.list,
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n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,

n.thin = 1)

svc.samples <- getSVCSamples(out)
str(svc.samples)

hbef2015 Detection-nondetection data of 12 foliage gleaning bird species in
2015 in the Hubbard Brook Experimental Forest

Description

Detection-nondetection data of 12 foliage gleaning bird species in 2015 in the Hubbard Brook
Experimental Forest (HBEF) in New Hampshire, USA. Data were collected at 373 sites over three
replicate point counts each of 10 minutes in length, with a detection radius of 100m. Some sites
were not visited for all three replicates. The 12 species included in the data set are as follows: (1)
AMRE: American Redstart; (2) BAWW: Black-and-white Warbler; (3) BHVI: Blue-headed Vireo;
(4) BLBW: Blackburnian Warbler; (5) BLPW: Blackpoll Warbler; (6) BTBW: Black-throated Blue
Warbler; (7) BTNW: BLack-throated Green Warbler; (8) CAWA: Canada Warbler; (9) MAWA:
Magnolia Warbler; (10) NAWA: Nashville Warbler; (11) OVEN: Ovenbird; (12) REVI: Red-eyed
Vireo.

Usage

data(hbef2015)

Format

hbef2015 is a list with four elements:

y: a three-dimensional array of detection-nondetection data with dimensions of species (12), sites
(373) and replicates (3).

occ.covs: a numeric matrix with 373 rows and one column consisting of the elevation at each site.

det.covs: a list of two numeric matrices with 373 rows and 3 columns. The first element is the
day of year when the survey was conducted for a given site and replicate. The second element is
the time of day when the survey was conducted.

coords: a numeric matrix with 373 rows and two columns containing the site coordinates (East-
ing and Northing) in UTM Zone 19. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NADS83".
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Source

Rodenhouse, N. and S. Sillett. 2019. Valleywide Bird Survey, Hubbard Brook Experimental Forest,
1999-2016 (ongoing) ver 3. Environmental Data Initiative. doi:10.6073/pasta/faca2b2cf2db9d415¢39b695cc7fc217
(Accessed 2021-09-07)

References

Doser, J. W., Leuenberger, W., Sillett, T. S., Hallworth, M. T. & Zipkin, E. F. (2022). Integrated
community occupancy models: A framework to assess occurrence and biodiversity dynamics using
multiple data sources. Methods in Ecology and Evolution, 00, 1-14. doi:10.1111/2041210X.13811

hbefElev Elevation in meters extracted at a 30m resolution across the Hubbard
Brook Experimental Forest

Description

Elevation in meters extracted at a 30m resolution of the Hubbard Brook Experimental Forest. Data
come from the National Elevation Dataset.

Usage
data(hbefElev)

Format

hbefElev is a data frame with three columns:
val: the elevation value in meters.

Easting: the x coordinate of the point. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NADS3".

Northing: the y coordinate of the point. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NADS3".

Source

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., & Tyler, D. (2002). The national
elevation dataset. Photogrammetric engineering and remote sensing, 68(1), 5-32.

References

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., & Tyler, D. (2002). The national
elevation dataset. Photogrammetric engineering and remote sensing, 68(1), 5-32.


https://doi.org/10.6073/pasta/faca2b2cf2db9d415c39b695cc7fc217
https://doi.org/10.1111/2041-210X.13811
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hbefTrends Detection-nondetection data of 12 foliage gleaning bird species from
2010-2018 in the Hubbard Brook Experimental Forest

Description

Detection-nondetection data of 12 foliage gleaning bird species in 2010-2018 in the Hubbard Brook
Experimental Forest (HBEF) in New Hampshire, USA. Data were collected at 373 sites over three
replicate point counts each of 10 minutes in length, with a detection radius of 100m. Some sites
were not visited for all three replicates. The 12 species included in the data set are as follows: (1)
AMRE: American Redstart; (2) BAWW: Black-and-white Warbler; (3) BHVI: Blue-headed Vireo;
(4) BLBW: Blackburnian Warbler; (5) BLPW: Blackpoll Warbler; (6) BTBW: Black-throated Blue
Warbler; (7) BTNW: BLack-throated Green Warbler; (8) CAWA: Canada Warbler; (9) MAWA:
Magnolia Warbler; (10) NAWA: Nashville Warbler; (11) OVEN: Ovenbird; (12) REVI: Red-eyed
Vireo.

Usage
data(hbefTrends)

Format

hbefTrends is a list with four elements:

y: a four-dimensional array of detection-nondetection data with dimensions of species (12), sites
(373), years (9), and replicates (3).

occ.covs: a list of potential covariates for inclusion in the occurrence portion of an occupancy
model. There are two covariates: elevation (a site-level covariate), and years (a temporal covariate.
) det.covs: a list of two numeric three-dimensional arrays with dimensions corresponding to
sites (373), years (9), and replicates (3). The first element is the day of year when the survey was
conducted for a given site, year, and replicate. The second element is the time of day when the
survey was conducted.

coords: a numeric matrix with 373 rows and two columns containing the site coordinates (East-
ing and Northing) in UTM Zone 19. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NADS§3".

Source

Rodenhouse, N. and S. Sillett. 2019. Valleywide Bird Survey, Hubbard Brook Experimental Forest,
1999-2016 (ongoing) ver 3. Environmental Data Initiative. doi:10.6073/pasta/faca2b2cf2db9d415¢39b695cc7fc217
(Accessed 2021-09-07)

References

Doser, J. W., Leuenberger, W., Sillett, T. S., Hallworth, M. T. & Zipkin, E. F. (2022). Integrated
community occupancy models: A framework to assess occurrence and biodiversity dynamics using
multiple data sources. Methods in Ecology and Evolution, 00, 1-14. doi:10.1111/2041210X.13811


https://doi.org/10.6073/pasta/faca2b2cf2db9d415c39b695cc7fc217
https://doi.org/10.1111/2041-210X.13811
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intPGOcc

Function for Fitting Single-Species Integrated Occupancy Models Us-
ing Polya-Gamma Latent Variables

Description

Function for fitting single-species integrated occupancy models using Polya-Gamma latent vari-
ables. Data integration is done using a joint likelihood framework, assuming distinct detection
models for each data source that are each conditional on a single latent occurrence process.

Usage

intPGOcc(occ.formula, det.formula, data, inits, priors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 1000,

n.burn
k.fold
k.fold

Arguments

occ.formula

det.formula

data

inits

= round(.1@ * n.samples), n.thin = 1, n.chains = 1,

, k.fold.threads = 1, k.fold.seed,
.data, k.fold.only = FALSE, ...)

a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below.

a list of symbolic descriptions of the models to be fit for the detection portion
of the model using R’s model syntax for each data set. Each element in the list
is a formula for the detection model of a given data set. Only right-hand side of
formula is specified. See example below.

a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, and sites. y is a list of matrices or data frames for each data set
used in the integrated model. Each element of the list has first dimension equal
to the number of sites with that data source and second dimension equal to the
maximum number of replicates at a given site. occ.covs is a matrix or data
frame containing the variables used in the occupancy portion of the model, with
the number of rows being the number of sites with at least one data source for
each column (variable). det. covs is a list of variables included in the detection
portion of the model for each data source. det. covs should have the same num-
ber of elements as y, where each element is itself a list. Each element of the list
for a given data source is a different detection covariate, which can be site-level
or observational-level. Site-level covariates are specified as a vector with length
equal to the number of observed sites of that data source, while observation-level
covariates are specified as a matrix or data frame with the number of rows equal
to the number of observed sites of that data source and number of columns equal
to the maximum number of replicates at a given site.

a list with each tag corresponding to a parameter name. Valid tags are z, beta,
and alpha. The value portion of tags z and beta is the parameter’s initial value.
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The tag alpha is a list comprised of the initial values for the detection parame-
ters for each data source. Each element of the list should be a vector of initial
values for all detection parameters in the given data source or a single value for
each data source to assign all parameters for a given data source the same initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal

and alpha.normal. Occurrence (beta) and detection (alpha) regression coef-
ficients are assumed to follow a normal distribution. For beta hyperparameters
of the normal distribution are passed as a list of length two with the first and sec-
ond elements corresponding to the mean and variance of the normal distribution,
which are each specified as vectors of length equal to the number of coefficients
to be estimated or of length one if priors are the same for all coefficients. For
the detection coefficients alpha, the mean and variance hyperparameters are
themselves passed in as lists, with each element of the list corresponding to the
specific hyperparameters for the detection parameters in a given data source. If
not specified, prior means are set to 0 and prior variances set to 2.72.

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hypterthreaded cores. Note, n.omp. threads > 1 might not work on some sys-

tems.
verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.
n.report the interval to report MCMC progress.
n.burn the number of samples out of the total n.samples to discard as burn-in. By

default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.
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k.fold.seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.data an integer specifying the specific data set to hold out values from. If not spec-
ified, data from all data set locations will be incorporated into the k-fold cross-
validation.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

Value

An object of class intPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occupancy regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients for
all data sources.

z.samples a coda object of posterior samples for the latent occupancy values
psi.samples a coda object of posterior samples for the latent occupancy probability values
rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

k.fold.deviance
scoring rule (deviance) from k-fold cross-validation. A separate deviance value
is returned for each data source. Only included if k. fold is specified in function
call. Only a single value is returned if k. fold. data is specified.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>


https://repositories.lib.utexas.edu/handle/2152/21842
https://repositories.lib.utexas.edu/handle/2152/21842
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Examples

set.seed(1008)

Simulate Data -----—--—--—-=———————— -
.x <= 15
.y <= 15

all <= J.x x Juy
Number of data sources.
.data <- 4
Sites for each data source.
.obs <- sample(ceiling(@0.2 * J.all):ceiling(@.5 x J.all), n.data, replace = TRUE)
Replicates for each data source.
.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
3
# Occupancy covariates
beta <- c(0.5, 1)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
for (i in 1:n.data) {
alphal[i]] <- runif(2, -1, 1)
3
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)

S G oS G GG

# Simulate occupancy data.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = FALSE)

y <- dat$y

X <- dat$X.obs

X.p <- dat$X.p
sites <- dat$sites

# Package all data into a list

occ.covs <- X[, 2, drop = FALSE]

colnames(occ.covs) <- c('occ.cov')

det.covs <- list()

# Add covariates one by one

det.covs[[1]] <- list(det.cov.1.1 = X.p[[111[, , 21)
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det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]1L[,
X.pCL311L,
det.covs[[4]] <- list(det.cov.4.1 = X.p[[4]1][,

det.covs[[3]] <- list(det.cov.3.1

data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
sites = sites)

J <- length(dat$z.obs)

# Initial values

inits.list <- list(alpha = list(o, 0, 0, @),
beta = 0,
z = rep(1, I))

# Priors

, 2D
,» 21D
A

prior.list <- list(beta.normal = list(mean = @, var = 2.72),

alpha.normal = list(mean =

n.samples <- 5000

out <- intPGOcc(occ.formula = ~ occ.cov,
det.formula = list(f.1 = ~ det.cov.
f.2 = ~ det.cov.
f.3 = ~ det.cov.
f.4 = ~ det.cov.

data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,

A w N =

list(o, 0, 0, 0),
var = list(2.72, 2.72, 2.72, 2.72)))

IfISDM

n.burn = 1000,
n.thin = 1,
n.chains = 1)
summary (out)
1fJSDM Function for Fitting a Latent Factor Joint Species Distribution Model
Description

Function for fitting a joint species distribution model with species correlations. This model does not
explicitly account for imperfect detection (see 1fMsPGOcc()). We use Polya-gamma latent variables

and a factor modeling approach.

Usage

1fJSDM(formula, data, inits, priors, n.factors,

n.samples, n.omp.threads = 1, verbose = TRUE, n.report = 100,

n.burn = round(.10 * n.samples), n.thin

k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE,

1, n.chains = 1,

>



IfISDM 27

Arguments

formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts are allowed using Ime4 syntax (Bates et al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, covs, and
coords. y is a two-dimensional array with first dimension equal to the number
of species and second dimension equal to the number of sites. Note how this
differs from other spOccupancy functions in that y does not have any replicate
surveys. This is because 1fJSDM does not account for imperfect detection. covs
is a matrix or data frame containing the variables used in the model, with J rows
for each column (variable). coords is a matrix with J rows and 2 columns con-
sisting of the spatial coordinates of each site in the data. Note that spOccupancy
assumes coordinates are specified in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are beta. comm,
beta, tau.sq.beta, sigma.sq.psi, lambda. The value portion of each tag is
the parameter’s initial value. See priors description for definition of each pa-
rameter name. Additionally, the tag fix can be set to TRUE to fix the starting
values across all chains. If fix is not specified (the default), starting values are
varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta. comm.normal,

tau.sq.beta.ig, and sigma.sq.psi.ig. Community-level (beta.comm) re-
gression coefficients are assumed to follow a normal distribution. The hyperpa-
rameters of the normal distribution are passed as a list of length two with the
first and second elements corresponding to the mean and variance of the normal
distribution, which are each specified as vectors of length equal to the number
of coefficients to be estimated or of length one if priors are the same for all co-
efficients. If not specified, prior means are set to 0 and prior variances set to
2.72. Community-level variance parameters (tau.sq.beta) are assumed to fol-
low an inverse Gamma distribution. The hyperparameters of the inverse gamma
distribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, which are each specified as
vectors of length equal to the number of coefficients to be estimated or a single
value if all parameters are assigned the same prior. If not specified, prior shape
and scale parameters are set to 0.1. The factor model fits n. factors indepen-
dent latent factors. The priors for the factor loadings matrix lambda are fixed
following standard approaches to ensure parameter identifiability. The upper
triangular elements of the N x n. factors matrix are fixed at 0 and the diagonal
elements are fixed at 1. The lower triangular elements are assigned a standard
normal prior (i.e., mean O and variance 1). sigma.sq.psi is the random effect
variance for any random effects, and is assumed to follow an inverse Gamma
distribution. The hyperparameters of the inverse-Gamma distribution are passed
as a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances.

n.factors the number of factors to use in the latent factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
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species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-

tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold. threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

k.fold. seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

Value
An object of class 1fJSDM that is a list comprised of:

beta.comm.samples
a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

tau.sq.beta.samples
a coda object of posterior samples for the occurrence community variance pa-
rameters.
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beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

lambda.samples a coda object of posterior samples for the latent factor loadings.

psi.samples a three-dimensional array of posterior samples for the latent probability of oc-
currence/detection values for each species.

sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ. formula.

w.samples a three-dimensional array of posterior samples for the latent effects for each

latent factor.
beta.star.samples

a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time MCMC sampler execution time reported using proc. time().

k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k. fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)
J.x <= 10
J.y <- 10
J<-J.x*Jy
n.rep <- rep(1, J)
N <- 10
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.6, 1.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 1.2, 1.7)
# Detection
# Fix this to be constant and really close to 1.
alpha.mean <- c(9)
tau.sq.alpha <- c(0.05)
p.det <- length(alpha.mean)
# Random effects
# Include a single random effect
psi.RE <- list(levels = c(20),
sigma.sqg.psi = c(2))

p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {

betal, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betalil))
3
for (i in 1:p.det) {

alphal, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sqg.alphalil))
3
alpha.true <- alpha
# Factor model
factor.model <- TRUE
n.factors <- 4

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = FALSE,
factor.model = TRUE, n.factors = 4)

X <- dat$X
y <- dat$y
X.re <- dat$X.re
coords <- dat$coords
occ.covs <- cbhind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.cov.1', 'occ.cov.2', 'occ.re.l')
data.list <- list(y = y[, , 11,
COVS = 0CC.COVSs,
coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1))
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inits.list <-
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list(beta.comm = @, beta = @, tau.sq.beta = 1)

out <- 1fJSDM(formula = ~ occ.cov.1 + occ.cov.2 + (1 | occ.re.1),

data = data.list,
inits = inits.list,
priors = prior.list,

n.factors = 4,
n.samples = 1000,
n.report = 500,
n.burn = 500,
n.thin = 2,
n.chains = 1)
summary (out)
1fMsPGOcc Function for Fitting Latent Factor Multi-Species Occupancy Models
Description

Function for fitting multi-species occupancy models with species correlations (i.e., a joint species
distribution model with imperfect detection). We use Polya-gamma latent variables and a factor
modeling approach for dimension reduction.

Usage

1fMsPGOcc(occ.formula, det.formula, data, inits, priors, n.factors,
n.samples, n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)

Arguments

occ.formula

det.formula

data

a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using Ime4 syntax (Bates et al.
2015).

a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, and coords. y is a three-dimensional array with first dimension
equal to the number of species, second dimension equal to the number of sites,
and third dimension equal to the maximum number of replicates at a given site.
occ.covs is a matrix or data frame containing the variables used in the occur-
rence portion of the model, with J rows for each column (variable). det.covs
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inits
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n.factors

n.samples
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is a list of variables included in the detection portion of the model. Each list el-
ement is a different detection covariate, which can be site-level or observational-
level. Site-level covariates are specified as a vector of length .J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site. coords is a matrix or data frame with two columns that contain
the spatial coordinates of each site. Note that spOccupancy assumes coordinates
are specified in a projected coordinate system.

alist with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, lambda, sigma.sq.psi,
sigma.sq.p, z. The value portion of each tag is the parameter’s initial value.
See priors description for definition of each parameter name. Additionally, the
tag fix can be set to TRUE to fix the starting values across all chains. If fix is
not specified (the default), starting values are varied randomly across chains.

a list with each tag corresponding to a parameter name. Valid tags are beta. comm.normal,

alpha.comm.normal, tau.sq.beta.ig, tau.sqg.alpha.ig, sigma.sq.psi.ig,
and sigma.sq.p.ig. Community-level occurrence (beta.comm) and detection
(alpha.comm) regression coefficients are assumed to follow a normal distribu-
tion. The hyperparameters of the normal distribution are passed as a list of
length two with the first and second elements corresponding to the mean and
variance of the normal distribution, which are each specified as vectors of length
equal to the number of coefficients to be estimated or of length one if priors
are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances set to 2.72. Community-level variance parameters for occurrence
(tau.sq.beta) and detection (tau. sq.alpha) are assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse gamma distribution
are passed as a list of length two with the first and second elements correspond-
ing to the shape and scale parameters, which are each specified as vectors of
length equal to the number of coefficients to be estimated or a single value if all
parameters are assigned the same prior. If not specified, prior shape and scale
parameters are set to 0.1. The factor model fits n.factors independent latent
factors. The priors for the factor loadings matrix lambda are fixed following
standard approaches to ensure parameter identifiability. The upper triangular el-
ements of the N x n. factors matrix are fixed at 0 and the diagonal elements are
fixed at 1. The lower triangular elements are assigned a standard normal prior
(i.e., mean O and variance 1). sigma.sq.psi and sigma.sq.p are the random
effect variances for any occurrence or detection random effects, respectively,
and are assumed to follow an inverse Gamma distribution. The hyperparameters
of the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

the number of factors to use in the latent factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

the number of posterior samples to collect in each chain.
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n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hypterthreaded cores. Note, n.omp. threads > 1 might not work on some sys-

tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

k.fold. seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

Value

An object of class 1fMsPGOcc that is a list comprised of:

beta.comm.samples
a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples
a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples
a coda object of posterior samples for the occurrence community variance pa-
rameters.
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tau.sq.alpha.samples
a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

lambda.samples a coda object of posterior samples for the latent factor loadings.

z.samples a three-dimensional array of posterior samples for the latent occurrence values
for each species.

psi.samples a three-dimensional array of posterior samples for the latent occurrence proba-
bility values for each species.

sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ. formula.

sigma.sq.p.samples
a coda object of posterior samples for variances of random intercepts included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.

w.samples a three-dimensional array of posterior samples for the latent effects for each
latent factor.

beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.

alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det. formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time MCMC sampler execution time reported using proc.time().

k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k. fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().
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Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using
Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using Ime4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.101.

Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists.
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by modeling the occurrence of species. Journal of the American Statistical Association, 100(470),
389-398.

Examples

set.seed(400)
X <=8
.y <= 8
<-J.x*xJ.y
.rep<- sample(2:4, size = J, replace = TRUE)
<- 8
Community-level covariate effects
# Occurrence
beta.mean <- ¢(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
p.RE <- list()
# Include a random intercept on detection
p.RE <- list(levels = c(40),
sigma.sq.p = c(2))

for (i in 1:p.occ) {

beta[, il <- rnorm(N, beta.mean[i], sqrt(tau.sq.betal[i]))
3
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for (i in 1:p.det) {
alphal, il <- rnorm(N, alpha.mean[i], sqrt(tau.sqg.alphalil))
3

n.factors <- 4

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
sp = FALSE, factor.model = TRUE, n.factors = n.factors, p.RE = p.RE)
y <- dat$y
X <- dat$X
X.p <- dat$X.p
X.p.re <- dat$X.p.re
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21,
det.cov.2 = X.p[, , 31,
det.re = X.p.re[, , 11)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = dat$coords)

# Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
alpha.comm.normal = list(mean = @, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b =0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))
# Initial values
lambda.inits <- matrix(@, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = @,
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
lambda = lambda.inits,
z = apply(y, c(1, 2), max, na.rm = TRUE))

n.samples <- 300

n.burn <- 200
n.thin <- 1
out <- 1fMsPGOcc(occ.formula = ~ occ.cov,

det.formula = ~ det.cov.1 + det.cov.2 + (1 | det.re),
data = data.list,

inits = inits.list,

n.samples = n.samples,

priors = prior.list,

n.factors = n.factors,

n.omp.threads = 1,

verbose = TRUE,
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n.report = 100,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary (out, level = 'community')
msPGOcc Function for Fitting Multi-Species Occupancy Models Using Polya-
Gamma Latent Variables
Description

Function for fitting multi-species occupancy models using Polya-Gamma latent variables.

Usage

msPGOcc(occ. formula, det.formula, data, inits, priors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 100,

n.burn

k.fold,

Arguments

occ.formula

det.formula

data

= round(.1@ * n.samples), n.thin = 1, n.chains = 1,
k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)

a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using Ime4 syntax (Bates et al.
2015).

a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

a list containing data necessary for model fitting. Valid tags are y, occ.covs,
and det.covs. y is a three-dimensional array with first dimension equal to the
number of species, second dimension equal to the number of sites, and third
dimension equal to the maximum number of replicates at a given site. occ.covs
is a matrix or data frame containing the variables used in the occurrence portion
of the model, with J rows for each column (variable). det.covs is a list of
variables included in the detection portion of the model. Each list element is
a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site.
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inits alist with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
and z. The value portion of each tag is the parameter’s initial value. See priors
description for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sqg.alpha.ig, sigma.sq.psi.ig,
and sigma.sq.p.ig. Community-level occurrence (beta.comm) and detection
(alpha.comm) regression coefficients are assumed to follow a normal distribu-
tion. The hyperparameters of the normal distribution are passed as a list of
length two with the first and second elements corresponding to the mean and
variance of the normal distribution, which are each specified as vectors of length
equal to the number of coefficients to be estimated or of length one if priors
are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances set to 2.72. Community-level variance parameters for occurrence
(tau.sq.beta) and detection (tau. sq.alpha) are assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse gamma distribution
are passed as a list of length two with the first and second elements correspond-
ing to the shape and scale parameters, which are each specified as vectors of
length equal to the number of coefficients to be estimated or a single value if all
parameters are assigned the same prior. If not specified, prior shape and scale
parameters are set to 0.1. sigma.sq.psi and sigma.sq.p are the random ef-
fect variances for any occurrence or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
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k.fold. threads

k.fold.seed

k.fold.only

Value

39

partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

An object of class msPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

beta.samples

alpha.samples

z.samples

psi.samples

a coda object of posterior samples for the detection community variance param-
eters.

a coda object of posterior samples for the species level occurrence regression
coefficients.

a coda object of posterior samples for the species level detection regression
coefficients.

a three-dimensional array of posterior samples for the latent occurrence values
for each species.

a three-dimensional array of posterior samples for the latent occurrence proba-
bility values for each species.

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ. formula.
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sigma.sq.p.samples
a coda object of posterior samples for variances of random intercepts included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.
beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.
alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.
like.samples  a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.
rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time MCMC sampler execution time reported using proc. time().
k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k. fold is specified in function
call.
The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().
Note
Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.
Author(s)
Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)
J.x <- 8
J.y <- 8
J<-J.x*Jy
n.rep <- sample(2:4, size = J, replace = TRUE)
N <-6
# Community-level covariate effects
# Occurrence
beta.mean <- ¢(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- ¢c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betal[i]))
3
for (i in 1:p.det) {
alphal, il <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alphalil))

3

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
sp = FALSE)

y <- dat$y

X <- dat$X

X.p <- dat$X.p
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21,
det.cov.2 = X.p[, , 31
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs)

# Occupancy initial values

prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
alpha.comm.normal = list(mean = @, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

# Initial values

inits.list <- list(alpha.comm = 0,
beta.comm = @,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
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z = apply(y, c(1, 2), max, na.rm = TRUE))

n.samples <- 3000

n.burn <- 2000

n.thin <- 1

out <- msPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

summary (out, level = 'community')

neon2015 Detection-nondetection data of 12 foliage gleaning bird species in
2015 in Bartlett Experimental Forest in New Hampshire, USA
Description

Detection-nondetection data of 12 foliage gleaning bird species in 2015 in the Bartlett Experimen-
tal Forest in New Hampshire, USA. These data were collected as part of the National Ecological
Observatory Network (NEON). Data were collected at 80 sites where observers recorded the num-
ber of all bird species observed during a six minute, 125m radius point count survey once during
the breeding season. The six minute survey was split into three two-minute intervals following a
removal design where the observer recorded the interval during which a species was first observed
(if any) with a 1, intervals prior to observation with a 0, and then mentally removed the species
from subsequent intervals (marked with NA), which enables modeling of data in an occupancy
modeling framework. The 12 species included in the data set are as follows: (1) AMRE: Amer-
ican Redstart; (2) BAWW: Black-and-white Warbler; (3) BHVI: Blue-headed Vireo; (4) BLBW:
Blackburnian Warbler; (5) BLPW: Blackpoll Warbler; (6) BTBW: Black-throated Blue Warbler;
(7) BTNW: BLack-throated Green Warbler; (8) CAWA: Canada Warbler; (9) MAWA: Magnolia
Warbler; (10) NAWA: Nashville Warbler; (11) OVEN: Ovenbird; (12) REVI: Red-eyed Vireo.

Usage

data(neon2015)

Format

neon2015 is a list with four elements:
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y: a three-dimensional array of detection-nondetection data with dimensions of species (12), sites
(80) and replicates (3).

occ.covs: a numeric matrix with 80 rows and one column consisting of the elevation at each site.

det.covs: alist of two numeric vectors with 80 elements. The first element is the day of year when
the survey was conducted for a given site. The second element is the time of day when the survey
began.

coords: a numeric matrix with 80 rows and two columns containing the site coordinates (East-
ing and Northing) in UTM Zone 19. The proj4string is "+proj=utm +zone=19 +units=m +da-
tum=NADS§3".

Source

NEON (National Ecological Observatory Network). Breeding landbird point counts, RELEASE-
2021 (DP1.10003.001). https://doi.org/10.48443/s730-dy13. Dataset accessed from https://data.neonscience.org
on October 10, 2021
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PGOcc Function for Fitting Single-Species Occupancy Models Using Polya-
Gamma Latent Variables

Description

Function for fitting single-species occupancy models using Polya-Gamma latent variables.

Usage

PGOcc(occ.formula, det.formula, data, inits, priors, n.samples,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.samples), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed, k.fold.only = FALSE, ...)
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Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using Ime4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using lme4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ. covs, and
det.covs. y is a matrix or data frame with first dimension equal to the number
of sites (J) and second dimension equal to the maximum number of replicates
at a given site. occ. covs is a matrix or data frame containing the variables used
in the occurrence portion of the model, with J rows for each column (variable).
det.covs is a list of variables included in the detection portion of the model.
Each list element is a different detection covariate, which can be site-level or
observational-level. Site-level covariates are specified as a vector of length J
while observation-level covariates are specified as a matrix or data frame with
the number of rows equal to J and number of columns equal to the maximum
number of replicates at a given site.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq.psi, and sigma. sq.p. The value portion of each tag is the pa-
rameter’s initial value. sigma.sq.psi and sigma.sq.p are only relevant when
including random effects in the occurrence and detection portion of the occu-
pancy model, respectively. See priors description for definition of each param-
eter name. Additionally, the tag fix can be set to TRUE to fix the starting values
across all chains. If fix is not specified (the default), starting values are varied
randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, sigma.sq.psi.ig, and sigma.sq.p.ig. Occupancy (beta)
and detection (alpha) regression coefficients are assumed to follow a normal
distribution. The hyperparameters of the normal distribution are passed as a
list of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if pri-
ors are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances set to 2.72. sigma.sq.psi and sigma.sq.p are the random ef-
fect variances for any occurrence or detection random effects, respectively, and
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse-Gamma distribution are passed as a list of length two with first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

n.samples the number of posterior samples to collect in each chain.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
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verbose

n.report

n.burn

n.thin

n.chains
k.fold

k.fold.threads

k.fold.seed

k.fold.only

Value

45

hypterthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

the interval to report MCMC progress.

the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

the number of chains to run in sequence.

specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

An object of class PGOcc that is a list comprised of:

beta.samples
alpha.samples
z.samples

psi.samples

a coda object of posterior samples for the occupancy regression coefficients.
a coda object of posterior samples for the detection regression coefficients.
a coda object of posterior samples for the latent occupancy values

a coda object of posterior samples for the latent occupancy probability values

sigma.sq.psi.samples

a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ. formula.

sigma.sq.p.samples

a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.
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beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.
alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det.formula.
like.samples  a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.
rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc. time().
k.fold.deviance
scoring rule (deviance) from k-fold cross-validation. Only included if k. fold is
specified in function call.
The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().
Note
Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.
Author(s)
Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
References

Polson, N.G., J.G. Scott, and J. Windle. (2013) Bayesian Inference for Logistic Models Using
Polya-Gamma Latent Variables. Journal of the American Statistical Association, 108:1339-1349.

Bates, Douglas, Martin Maechler, Ben Bolker, Steve Walker (2015). Fitting Linear Mixed-Effects
Models Using Ime4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.101.

Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists.
Ecological monographs, 85(1), 3-28.

MacKenzie, D. 1., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm.
2002. Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One. Ecology
83: 2248-2255.
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Examples

set.seed(400)
J.x <- 10
J.y <- 10
J<-J.x*J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- ¢(0.5, -0.15)
p.occ <- length(beta)
alpha <- c(0.7, 0.4)
p.det <- length(alpha)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sp = FALSE)
occ.covs <- dat$X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov = dat$X.p[, , 21)
# Data bundle
data.list <- list(y = dat$y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs)

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72))

# Initial values

inits.list <- list(alpha = @, beta = 0,
z = apply(data.list$y, 1, max, na.rm = TRUE))

n.samples <- 5000
n.report <- 1000

out <- PGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = n.report,

n.burn = 1000,
n.thin = 1,
n.chains = 1)
summary (out)
ppcOcc Function for performing posterior predictive checks
Description

Function for performing posterior predictive checks on spOccupancy model objects.
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Usage

ppcOcc(object,

Arguments

object

fit.stat

group

Details

ppcOcc

fit.stat, group, ...)

an object of class PGOcc, spPGOcc, msPGOcc, spMsPGOcc, intPGOcc, spIntPGOcc,
1fMsPGOcc, sfMsPGOcc, tPGOcc, stPGOcc, svcPGOcc.

a quoted keyword that specifies the fit statistic to use in the posterior predictive
check. Supported fit statistics are "freeman-tukey” and "chi-squared”.

a positive integer indicating the way to group the detection-nondetection data
for the posterior predictive check. Value 1 will group values by row (site) and
value 2 will group values by column (replicate).

currently no additional arguments

Standard GoF assessments are not valid for binary data, and posterior predictive checks must be
performed on some sort of binned data.

Value

An object of class ppcOcc that is a list comprised of:

fit.y

fit.y.rep

a numeric vector of posterior samples for the fit statistic calculated on the ob-
served data when object is of class PGOcc, spPGOcc, or svcPGOcc. When
object is of class msPGOcc, spMsPGOcc, 1fMsPGOcc, or sfMsPGOcc, this is a
numeric matrix with rows corresponding to posterior samples and columns cor-
responding to species. When object is of class intPGOcc or spIntPGOcc, this
is a list, with each element of the list being a vector of posterior samples for each
data set. When object is of class tPGOcc or stPGOcc, this is a numeric matrix
with rows corresponding to posterior samples and columns corresponding to
primary sampling periods.

a numeric vector of posterior samples for the fit statistic calculated on a replicate
data set generated from the model when object is of class PGOcc, spPGOcc,
or svcPGOcc. When object is of class msPGOcc, spMsPGOcc, 1fMsPGOcc, or
sfMsPGOcc, this is a numeric matrix with rows corresponding to posterior sam-
ples and columns corresponding to species. When object is of class intPGOcc
or spIntPGOcc, this is a list, with each element of the list being a vector of poste-
rior samples for each data set. When object is of class tPGOcc or stPGOcc, this
is a numeric matrix with rows corresponding to posterior samples and columns
corresponding to primary sampling periods.

fit.y.group.quants

a matrix consisting of posterior quantiles for the fit statistic using the observed
data for each unique element the fit statistic is calculated for (i.e., sites when
group = 1, replicates when group = 2) when object is of class PGOcc, spPGOcc,
or svcPGOcc. When object is of class msPGOcc, spMsPGOcc, 1fMsPGOcc, or
sfMsPGOcc, this is a three-dimensional array with the additional dimension cor-
responding to species. When object is of class intPGOcc or spIntPGOcc, this is
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a list, with each element consisting of the posterior quantile matrix for each data
set. When object is of class tPGOcc or stPGOcc, this is a three-dimensional
array with the additional dimension corresponding to primary sampling periods.
fit.y.rep.group.quants

a matrix consisting of posterior quantiles for the fit statistic using the model
replicated data for each unique element the fit statistic is calculated for (i.e.,
sites when group = 1, replicates when group = 2) when object is of class
PGOcc, spPGOcc, svcPGOcc. When object is of class msPGOcc, spMsPGOcc,
1fMsPGOcc, or sfMsPGOcc, this is a three-dimensional array with the additional
dimension corresponding to species. When object is of class intPGOcc or
spIntPGOcc, this is a list, with each element consisting of the posterior quantile
matrix for each data set. When object is of class tPGOcc or stPGOcc, this is a
three-dimensional array with the additional dimension corresponding to primary
sampling periods.

The return object will include additional objects used for standard extractor functions.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)
# Simulate Data ———-————=———=———=—
J.x <- 8
J.y <- 8
J<-J.x=*1J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, -0.15)
p.occ <- length(beta)
alpha <- c(0.7, 0.4)
p.det <- length(alpha)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sp = FALSE)
occ.covs <- dat$X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov = dat$X.p[, , 21)
# Data bundle
data.list <- list(y = dat$y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs)

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72))

# Initial values

inits.list <- list(alpha = @, beta = 0,
z = apply(data.list$y, 1, max, na.rm = TRUE))
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n.samples <- 5000
n.report <- 1000

out <- PGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = n.report,
n.burn = 4000,
n.thin = 1)

# Posterior predictive check
ppc.out <- ppcOcc(out, fit.stat = 'chi-squared', group = 1)
summary (ppc.out)

predict.intPGOcc Function for prediction at new locations for single-species integrated
occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘intPGOcc*.

Usage
## S3 method for class 'intPGOcc'
predict(object, X.0, ...)
Arguments
object an object of class intPGOcc
X.0 the design matrix for prediction locations. This should include a column of 1s

for the intercept. Covariates should have the same column names as those used
when fitting the model with intPGOcc.

currently no additional arguments

Value

An object of class predict.intPGOcc that is a list comprised of:

psi.@.samples a coda object of posterior predictive samples for the latent occurrence probabil-
ity values.

z.0.samples a coda object of posterior predictive samples for the latent occurrence values.

The return object will include additional objects used for standard extractor functions.
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Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(1008)

Simulate Data ----------—-=——=——————-—m
X <= 10
.y <- 10
.all <- J.x * J.y
Number of data sources.
.data <- 4
Sites for each data source.
.obs <- sample(ceiling(@.2 * J.all):ceiling(@.5 x J.all), n.data, replace = TRUE)
Replicates for each data source.
.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
3
# Occupancy covariates
beta <- ¢(0.5, 1)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
for (i in 1:n.data) {
alphal[[i]] <~ runif(2, -1, 1)
3
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)

S G #H S GG

# Simulate occupancy data.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = FALSE)

y <- dat$y

X <- dat$X.obs

X.p <- dat$X.p
sites <- dat$sites

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list()
# Add covariates one by one
det.covs[[1]] <- list(det.cov.
det.covs[[2]] <- list(det.cov.
det.covs[[3]] <- list(det.cov.
det.covs[[4]] <- list(det.cov.
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,

X.pLL111C, , 21)
X.pLL211C, , 2D)
X.pLL311C, , 21)
X.pL[411C, , 21)

A w N =
—_ a4
1
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J <- length(dat$
# Initial values

det.covs = det.covs,
sites = sites)

z.0bs)

inits.list <- list(alpha = list(o, 0, 0, @),

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean

n.samples <- 500
out <- intPGOcc(

beta = 0,
z = rep(1, 1))

0

list(o, o, o, 0),

predict.IfJSDM

var = list(2.72, 2.72, 2.72, 2.72)))

occ.formula = ~ occ.cov,

det.formula = list(f.1
f.2

f.3 =

f.4
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,

verbose = TRUE,
n.report = 1000,

n.burn
n.thin

summary (out)
# Prediction

X.0 <- dat$X.pred
psi.@ <- dat$psi.pred

= 4000,
D)

out.pred <- predict(out, X.0)
psi.hat.quants <- apply(out.pred$psi.@.samples, 2, quantile, c(0.025, 0.5, 0.975))

plot(psi.0@, psi.hat.quants[2, 1, pch = 19, xlab = 'True',
ylab = 'Fitted', ylim = c(min(psi.hat.quants), max(psi.hat.quants)))
segments(psi.@, psi.hat.quants[1, ], psi.@, psi.hat.quants[3, 1)

lines(psi.@, psi.o)

det.
det.
det.
det.

Cov.
Cov.
Cov.
Cov.

A ow N =

predict.1fJSDM

Function for prediction at new locations for latent factor joint species

distribution models

Description

The function predict collects posterior predictive samples for a set of new locations given an object

of class ‘IfJSDM".
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Usage
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## S3 method for class '1fJSDM'
predict(object, X.0, coords.o,
ignore.RE = FALSE, ...)

Arguments

object
X.0

coords. @

ignore.RE

Value

an object of class IfJSDM

the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the model, the levels of the random effects at the new
locations should be included as a column in the design matrix. The ordering
of the levels should match the ordering used to fit the data in 1fJSDM. Columns
should correspond to the order of how covariates were specified in the formula
argument of 1f JSDM. Column names of the random effects must match the name
of the random effects, if specified in the formula argument of 1fJSDM.

the spatial coordinates corresponding to X. 0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

currently no additional arguments

A list object of class predict.1fJSDM that consists of:

psi.0.samples

z.0.samples

w.0.samples

a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

a three-dimensional array of posterior predictive samples for the latent factors.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate

random effects.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)
X <- 8
.y <- 8
<-J.x*xJ.y
.rep<- sample(2:4, size = J, replace = TRUE)
<- 6
Community-level covariate effects
Occurrence
beta.mean <- ¢(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- ¢c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betal[i]))
3
for (i in 1:p.det) {
alphal, il <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alphalil))
3

HOHZ D Gy

n.factors <- 3

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta
sp = FALSE, factor.model = TRUE, n.factors = n.factors)

n.samples <- 5000
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)

# Summarize the multiple replicates into a single value for use in a JSDM

y <- apply(dat$y[, -pred.indx, 1, c(1, 2), max, na.rm = TRUE)
# Covariates
X <- dat$X[-pred.indx, ]
# Spatial coordinates
coords <- dat$coords[-pred.indx, ]
# Prediction values
X.0 <- dat$X[pred.indx, 1]
psi.0@ <- dat$psil[, pred.indx]
coords.@ <- dat$coords[pred.indx, ]
# Package all data into a list
covs <- X[, 2, drop = FALSE]
colnames(covs) <- c('occ.cov')
data.list <- list(y =y,
Covs = covs,
coords = coords)

# Occupancy initial values

prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),

tau.sq.beta.ig = list(a = 0.1, b = 0.1))

predict.IfJSDM

beta, alpha = alpha,
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# Initial values
lambda.inits <- matrix(@, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = 0,
beta.comm = 0,
beta = 0,
tau.sq.beta = 1,
lambda = lambda.inits)

out <- 1fJSDM(formula = ~ occ.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
n.factors = 3,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 4000)

summary (out)

# Predict at new locations --------------------———-———-—————
out.pred <- predict(out, X.0, coords.Q)

predict.1fMsPGOcc Function for prediction at new locations for latent factor multi-species
occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘IfMsPGOcc*. Prediction is possible for both the latent occupancy state as well as
detection.

Usage

## S3 method for class '1fMsPGOcc'
predict(object, X.0, coords.o,

ignore.RE = FALSE, type = 'occupancy', ...)
Arguments
object an object of class IfMsPGOcc
X.0 the design matrix of covariates at the prediction locations. This should include a

column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
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coords.Q

ignore.RE

type

Value

predict.IfMsPGOcc

be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in 1fMsPGOcc. Columns should corre-
spond to the order of how covariates were specified in the corresponding formula
argument of 1fMsPGOcc. Column names of the random effects must match the
name of the random effects, if specified in the corresponding formula argument
of 1fMsPGOcc.

the spatial coordinates corresponding to X.@. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

currently no additional arguments

a quoted keyword indicating what type of prediction to produce. Valid keywords
are “occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

A list object of class predict.1fMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples

z.0.samples

w.0.samples

a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

a three-dimensional array of posterior predictive samples for the latent factors.

When type = 'detection’, the list consists of:

p.0.samples

a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate

random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)
X <- 8
.y <- 8
<-J.x*xJ.y
.rep<- sample(2:4, size = J, replace = TRUE)
<- 6
Community-level covariate effects
Occurrence
beta.mean <- ¢(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- ¢c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betal[i]))
3
for (i in 1:p.det) {
alphal, il <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alphalil))
3
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n.factors <- 3
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
sp = FALSE, factor.model = TRUE, n.factors = n.factors)

n.samples <- 5000
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Spatial coordinates
coords <- dat$coords[-pred.indx, ]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , 1]
# Prediction values
X.0 <- dat$X[pred.indx, ]
psi.@ <- dat$psil, pred.indx]
coords.@ <- dat$coords[pred.indx, ]
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21,

det.cov.2 = X.p[, , 31)
data.list <- list(y =y,

0CC.COVS = 0CC.COVS,

det.covs = det.covs,

coords = coords)
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# Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
alpha.comm.normal = list(mean = @, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b =0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))
# Initial values
lambda.inits <- matrix(@, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = 0,
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
lambda = lambda.inits,
z = apply(y, c(1, 2), max, na.rm = TRUE))

out <- 1fMsPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.samples = n.samples,
n.factors = 3,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 4000)

summary (out, level = 'community')

# Predict at new locations ----------------————-----——————————
out.pred <- predict(out, X.0, coords.Q)

predict.msPGOcc Function for prediction at new locations for multi-species occupancy
models

Description
The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘msPGOcc*. Prediction is possible for both the latent occupancy state as well as detection.
Usage

## S3 method for class 'msPGOcc'
predict(object, X.@, ignore.RE = FALSE, type = 'occupancy', ...)
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Arguments

object

X.0

ignore.RE

type

Value
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an object of class msPGOcc

the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection") por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in msPGOcc. Columns should correspond
to the order of how covariates were specified in the corresponding formula ar-
gument of msPGOcc. Column names of the random effects must match the name
of the random effects, if specified in the corresponding formula argument of
msPGOcc.

a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, random effects will be ignored and prediction will only use
the fixed effects. If FALSE, random effects will be included in the prediction for
both observed and unobserved levels of the random effect.

currently no additional arguments

a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

A list object of class predict.msPGOcc. When type = 'occupancy ', the list consists of:

psi.0.samples

z.0.samples

a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

When type = 'detection’, the list consists of:

p.0.samples

a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate

random effects.
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Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)
X <= 8
.y <- 8
<-J.x* Jy
.rep<- sample(2:4, size = J, replace = TRUE)
<- 6
Community-level covariate effects
Occurrence
beta.mean <- ¢(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- ¢c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
betal, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betalil))
3
for (i in 1:p.det) {
alphal[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sqg.alphal[il))
3
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dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
sp = FALSE)
n.samples <- 5000
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
<- dat$y[, -pred.indx, ]
Occupancy covariates
<- dat$X[-pred.indx, 1]
Detection covariates
.p <~ dat$X.p[-pred.indx, , ]
Prediction values
X.0 <- dat$X[pred.indx, 1]
psi.@ <- dat$psil[, pred.indx]
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 X.pl, , 21,
det.cov.2 = X.p[, , 31)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs)

H X H X H <
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# Occupancy initial values

prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
alpha.comm.normal = list(mean = @, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b =0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))

# Initial values

inits.list <- list(alpha.comm = @,
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
z = apply(y, c(1, 2), max, na.rm = TRUE))

out <- msPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 4000)

summary(out, level = 'community')

# Predict at new locations ---------------——---——--——---———— oo
out.pred <- predict(out, X.0)

predict.PGOcc Function for prediction at new locations for single-species occupancy
models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘PGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.

Usage

## S3 method for class 'PGOcc'

predict(object, X.0, ignore.RE = FALSE, type = 'occupancy', ...)
Arguments

object an object of class PGOcc
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the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection") por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in PGOcc. Columns should correspond to
the order of how covariates were specified in the corresponding formula argu-
ment of PGOcc. Column names of the random effects must match the name of
the random effects, if specified in the corresponding formula argument of PGOcc.

logical value that specifies whether or not to remove random occurrence (or
detection if type = 'detection') effects from the subsequent predictions. If
TRUE, random effects will be included. If FALSE, random effects will be set to O
and predictions will only be generated from the fixed effects.

a quoted keyword indicating what type of prediction to produce. Valid keywords
are “occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

currently no additional arguments

A list object of class predict.PGOcc. When type = 'occupancy’, the list consists of:

a coda object of posterior predictive samples for the latent occupancy probabil-
ity values.

a coda object of posterior predictive samples for the latent occupancy values.

When type = 'detection’, the list consists of:

a coda object of posterior predictive samples for the detection probability values.

The return object will include additional objects used for standard extractor functions.

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
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X.0
ignore.RE
type
Value
psi.0.samples
z.0.samples
p.0.samples
Note
random effects.
Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)

# Simulate Data ————=—=—=—=—=——=——— -

J.x <- 10

J.y <- 10

J<-J.x*Jy

n.rep <- sample(2:4, J, replace = TRUE)

beta <- c(0.5, 2)

p.occ <- length(beta)

alpha <- c(o, 1)

p.det <- length(alpha)

dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sp = FALSE)

# Split into fitting and prediction data set

pred.indx <- sample(1:J, round(J * .25), replace = FALSE)

<- dat$y[-pred.indx, ]

Occupancy covariates

<- dat$X[-pred.indx, 1]

Prediction covariates

.0 <- dat$X[pred.indx, 1]

Detection covariates

.p <- dat$X.p[-pred.indx, , ]

X #H X H X H <

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov = X.p[, , 21)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs)
# Priors
prior.list <- list(beta.normal = list(mean = rep(@, p.occ),
var = rep(2.72, p.occ)),
alpha.normal = list(mean = rep(@, p.det),
var = rep(2.72, p.det)))
# Initial values
inits.list <- list(alpha = rep(@, p.det),
beta = rep(0@, p.occ),
z = apply(y, 1, max, na.rm = TRUE))

n.samples <- 5000
n.report <- 1000

out <- PGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = n.report,
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n.burn = 4000,

n.thin

summary (out)

# Predict at new
colnames(X.0) <-

D)

10Cations ————————mm
c('intercept', 'occ.cov')

out.pred <- predict(out, X.0)
psi.@.quants <- apply(out.pred$psi.@.samples, 2, quantile, c(@.025, 0.5, 0.975))
plot(dat$psilpred.indx], psi.@.quants[2, 1, pch = 19, xlab = 'True',

ylab = 'Fitted', ylim = c(min(psi.@.quants), max(psi.@.quants)))
segments(dat$psilpred.indx], psi.@.quants[1, 1, dat$psilpred.indx], psi.@.quants[3, 1)
lines(dat$psil[pred.indx], dat$psil[pred.indx])

predict.sfJSDM

Function for prediction at new locations for spatial factor joint species
distribution model

Description

The function predict collects posterior predictive samples for a set of new locations given an object

of class ‘sfISDM°.

Usage

## S3 method for class 'sfJSDM'

predict(object,

X.0, coords.@, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, ...)

Arguments

object
X.0

coords. @

n.omp. threads

an object of class sfJSDM

the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the model, the levels of the random effects at the new
locations should be included as a column in the design matrix. The ordering
of the levels should match the ordering used to fit the data in sfJSDM. Columns
should correspond to the order of how covariates were specified in the formula
argument of sfJSDM. Column names of the random effects must match the name
of the random effects, if specified in the formula argument of sfJSDM.

the spatial coordinates corresponding to X.@. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.
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verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

ignore.RE a logical value indicating whether to include unstructured random effects for

prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

currently no additional arguments

Value

An list object of class predict.sfJSDM that consists of:

psi.@.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.

z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

w.0.samples a three-dimensional array of posterior predictive samples for the latent spatial
factors.

run.time execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)
Jeffrey W. Doser <doser jef@msu.edu>,

Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

# Simulate Data ----------="""""—""—————
J.x <=7

J.y <=7

J<-J.x*Jy

n.rep <- sample(2:4, size = J, replace = TRUE)

N<-5

# Community-level covariate effects
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# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
betal, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betalil))
3
for (i in 1:p.det) {
alphal[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sqg.alphal[il))
3
n.factors <- 3
phi <- runif(n.factors, 3/1, 3/.4)
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential',
factor.model = TRUE, n.factors = n.factors)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.samples <- n.batch * batch.length

# Split into fitting and prediction data set

pred.indx <- sample(1:J, round(J * .25), replace = FALSE)

# Summarize the multiple replicates into a single value for use in a JSDM
y <- apply(dat$yl[, -pred.indx, 1, c(1, 2), max, na.rm = TRUE)
# Occupancy covariates

X <- dat$X[-pred.indx, ]

# Coordinates

coords <- as.matrix(dat$coords[-pred.indx, 1)

# Prediction values

X.0 <- dat$X[pred.indx, 1]

coords.® <- as.matrix(dat$coords[pred.indx, 1)

psi.0 <- dat$psil, pred.indx]

# Package all data into a list
covs <- X[, 2, drop = FALSE]
colnames(covs) <- c('occ.cov')
data.list <- list(y =y,
Ccovs = covs,
coords = coords)

# Priors
prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
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tau.sq.beta.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1),
sigma.sq.ig = list(a = 2, b = 2))
# Starting values
lambda.inits <- matrix(@, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(beta.comm = 0,

beta = 0,
tau.sq.beta = 1,
phi = 3 / .5,

sigma.sq = 2,

lambda = lambda.inits)
# Tuning
tuning.list <- list(phi = 1)

out <- sfJSDM(formula = ~ occ.cov,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
n.factors = 3,
priors = prior.list,
cov.model = "exponential”,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 100,
n.thin = 1)

summary(out, level = 'both')

# Predict at new locations ---------------——---——--———--———— oo
out.pred <- predict(out, X.@, coords.@, verbose = FALSE)

predict.sfMsPGOcc Function for prediction at new locations for spatial factor multi-
species occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘sfMsPGOcc*. Prediction is possible for both the latent occupancy state as well as
detection.
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Usage

predict.stMsPGOcc

## S3 method for class 'sfMsPGOcc'
predict(object, X.0, coords.@, n.omp.threads = 1, verbose = TRUE,
n.report = 100, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object
X.0

coords. 0

n.omp.threads

verbose

n.report

ignore.RE

type

Value

an object of class stMsPGOcc

the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection’) por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in sfMsPGOcc. Columns should corre-
spond to the order of how covariates were specified in the corresponding formula
argument of sfMsPGOcc. Column names of the random effects must match the
name of the random effects, if specified in the corresponding formula argument
of sfMsPGOcc.

the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp. threads > 1 might not work on some sys-
tems.

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

the interval to report sampling progress.

a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

a quoted keyword indicating what type of prediction to produce. Valid keywords
are “occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

currently no additional arguments

An list object of class predict.sfMsPGOcc. When type = 'occupancy', the list consists of:

psi.0.samples

a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.
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z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.

w.0.samples a three-dimensional array of posterior predictive samples for the latent spatial
factors.

run.time execution time reported using proc. time().

When type = 'detection’, the list consists of:

p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.

run.time execution time reported using proc.time().

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

Simulate Data -—---——=—=——-————---m oo
X <=7

Ly <=7

<-J.x*xJ.y

.rep <- sample(2:4, size = J, replace = TRUE)
<-5

Community-level covariate effects

Occurrence

beta.mean <- c(0.2, -0.15)

p.occ <- length(beta.mean)

tau.sq.beta <- c(0.6, 0.3)

# Detection

alpha.mean <- c(0.5, 0.2, -.2)

tau.sq.alpha <- c(0.2, 0.3, 0.8)

p.det <- length(alpha.mean)

# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)

alpha <- matrix(NA, nrow = N, ncol = p.det)

for (i in 1:p.occ) {

HOHZ D G
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betal,
3
for (i in 1:p.det) {
alphal, il <- rnorm(N,
3
n.factors <- 3
phi <- runif(n.factors, 3/1,
sp <- TRUE

dat <- simMsOcc(J.x =
phi = phi,
factor.model

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25

n.samples <- n.batch * batch.

i] <= rnorm(N, beta.

alpha.mean[i],

J.x, J.

mean[i],

sqrt(tau.sq.betalil))

sqrt(tau.sq.alphalil))

3/.4)

y = J.y, n.rep = n.rep,

sigma.sq = sigma.sq, sp = TRUE,
= TRUE, n.factors = n.factors)
length

# Split into fitting and prediction data set

pred.indx <- sample(1:7J,
y <- dat$y[, -pred.indx, ]
# Occupancy covariates

X <- dat$X[-pred.indx, 1]

# Coordinates

round(J *

.25), replace = FALSE)

coords <- as.matrix(dat$coords[-pred.indx, 1)

# Detection covariates

X.p <- dat$X.p[-pred.indx, ,
# Prediction values

X.0 <- dat$X[pred.indx, ]

]

coords.® <- as.matrix(dat$coords[pred.indx, 1)

psi.@ <- dat$psil, pred.indx]

# Package all data into a list

occ.covs <- X[, 2, drop =

colnames(occ.covs) <- c('occ.

det.covs <- list(det.cov.1 =
det.cov.2 =

data.list <- list(y =y,
0occ.covs =
det.covs =

FALSE]

cov')
X.pL,
X.pL,

, 21,
» 3D

0CC.covs,
det.covs,

coords = coords)

# Priors

prior.list <- list(beta.comm.
alpha.comm.normal =
tau.sq.beta.ig =
tau.sq.alpha.ig =

phi.unif

sigma.sq.ig =

# Starting values
lambda.inits <- matrix(@, N,
diag(lambda.inits) <- 1

normal = list(mean = @, var = 2.72),
list(mean = @, var = 2.72),
list(a = 0.1, b = 0.1),
list(a = 0. 1, b=20.1),
= list(a = 3/1, b =3/.1),
list(a = 2, =2))
n.factors)

N = N, beta = beta,
cov.model =

predict.stMsPGOcc

alpha = alpha,
'exponential’,
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lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda

inits.list <- list(alpha.comm = @,

# Tuning

beta.comm = 0,

beta = 0,

alpha = 0,

tau.sq.beta = 1,

tau.sq.alpha = 1,

phi =3/ .5,

sigma.sq = 2,

lambda = lambda.inits,

z = apply(y, c(1, 2), max, na.rm = TRUE))

tuning.list <- list(phi = 1)

out <- sfMsPGOcc(occ.formula = ~ occ.cov,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,

inits = inits.list,

n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
n.factors = 3,

priors = prior.list,
cov.model = "exponential”,
tuning = tuning.list,
n.omp.threads = 1,

verbose = TRUE,

NNGP = TRUE,

n.neighbors = 5,

search.type = 'cb',

n.report = 10,

n.burn = 100,

n.thin = 1)

summary (out, level = 'both')

# Predict at new locations

out.pred <- predict(out, X.0, coords.@, verbose = FALSE)

.inits)))
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spatial occupancy models

Function for prediction at new locations for single-species integrated

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘spIntPGOcc*.
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Usage

## S3 method for class 'spIntPGOcc'
predict(object, X.@, coords.®, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ...)
Arguments

object an object of class spIntPGOcc.

X.0 the design matrix for prediction locations. This should include a column of 1s
for the intercept. Covariates should have the same column names as those used
when fitting the model with spIntPGOcc.

coords.@ the spatial coordinates corresponding to X.@. Note that spOccupancy assumes

coordinates are specified in a projected coordinate system.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

n.report the interval to report sampling progress.

currently no additional arguments

Value

An object of class predict.spIntPGOcc that is a list comprised of:

psi.@.samples a coda object of posterior predictive samples for the latent occurrence probabil-
ity values.

z.0.samples a coda object of posterior predictive samples for the latent occurrence values.

The return object will include additional objects used for standard extractor functions.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Hooten, M. B., and Hefley, T. J. (2019). Bringing Bayesian models to life. CRC Press.
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Examples

set.seed(400)

# Simulate Data ——————=————=—————————m o

# Number of locations in each direction. This is the total region of interest
# where some sites may or may not have a data source.

J.x <- 8

J.y <-8

J.all <- J.x x J.y

# Number of data sources.

n.data <- 4

# Sites for each data source.

J.obs <- sample(ceiling(@.2 * J.all):ceiling(@.5 x J.all), n.data, replace = TRUE)
# Replicates for each data source.

n.rep <- list()

for (i in 1:n.data) {

n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
3
# Occupancy covariates
beta <- c(0.5, 0.5)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
alphal[[1]] <- runif(2, o, 1)
alphal[[2]] <- runif(3, 0, 1)
alpha[[3]] <- runif(2, -1, 1)
alphal[[4]] <- runif(4, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3/ .5
sp <- TRUE

ASIAN

# Simulate occupancy data.

dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = sp,
phi = phi, sigma.sq = sigma.sq, cov.model = 'spherical')

y <- dat$y

X <- dat$X.obs

X.p <- dat$X.p

sites <- dat$sites

X.0 <- dat$X.pred

psi.® <- dat$psi.pred

coords <- as.matrix(dat$coords.obs)
coords.@ <- as.matrix(dat$coords.pred)

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list()

# Add covariates one by one
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det.covs[[1]] <-
det.covs[[2]] <-

det.covs[[3]] <-
det.covs[[4]] <-

list(det.cov.
list(det.cov.
det.cov.
list(det.cov.
list(det.cov.
det.cov.
det.cov.

data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,

sites = sites,
coords = coords)

J <- length(dat$z.obs)

# Initial values

inits.list <- list(alpha = list(o, 0, 0, @),

# Priors

beta = 0,

phi =3 / .5,
sigma.sq = 2,

A A DD wDNDNO =
W N = =N = .

w = rep(0, J),

z

rep(1, 1))

prior.list <- list(beta.normal = list(mean

# Tuning

alpha.normal = list(mean
var
phi.unif = c(3/1, 3/.1),
sigma.sq.ig = c(2, 2))

tuning.list <- list(phi = 1)

# Number of batches

n.batch <- 40
# Batch length

batch.length <- 25

out <- spIntPGOcc(occ.formula

det.formula

~ occ.cov,
list(f.1

data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "spherical”,
tuning = tuning.list,
n.omp.threads
verbose = TRUE,

NNGP = TRUE,
n.neighbors

5:

1 ’

f.2
f.3 =
f.4

X.pLO1IIC, , 2D)
X.pLC211C, , 21,
X.pLl211C, , 31)
X.pLL311L, , 2D)
X.pLC411C, , 21,
X.pL[411C, , 31,
X

.pLL411L0, , 4D

0, var

predict.spIntPGOcc

2.72),

list(o, o, 0, 0),
list(2.72, 2.72, 2.72, 2.72)),

det.cov.
det.cov.
det.cov.
det.cov.

1

.1 + det.cov.2.2,
1
1

+ det.cov.4.2 + det.cov.4.3),



predict.spMsPGOcc

summary (out)

# Predict at new
out.pred <- predi
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search.type = 'cb',
n.report = 10,

n.burn = 500,
n.thin = 1)
locations ---------—=-------——-mmoo oo

ct(out, X.0, coords.@, verbose = FALSE)

predict.spMsPGOcc

Function for prediction at new locations for multi-species spatial oc-
cupancy models

Description

The function pred

ict collects posterior predictive samples for a set of new locations given an

object of class ‘spMsPGOcc‘. Prediction is possible for both the latent occupancy state as well as

detection.

Usage

## S3 method for class 'spMsPGOcc'

predict(object,

Arguments

object
X.0

coords. @

n.omp. threads

verbose

X.0, coords.@, n.omp.threads = 1, verbose = TRUE,
n.report = 100, ignore.RE = FALSE, type = 'occupancy', ...)

an object of class spMsPGOcc

the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection') por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in spMsPGOcc. Columns should corre-
spond to the order of how covariates were specified in the corresponding formula
argument of spMsPGOcc. Column names of the random effects must match the
name of the random effects, if specified in the corresponding formula argument
of spMsPGOcc.

the spatial coordinates corresponding to X.@. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.
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n.report the interval to report sampling progress.
ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.
type a quoted keyword indicating what type of prediction to produce. Valid keywords
are “occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.
currently no additional arguments
Value
An list object of class predict.spMsPGOcc. When type = 'occupancy', the list consists of:
psi.0@.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence probability values.
z.0.samples a three-dimensional array of posterior predictive samples for the latent occur-
rence values.
w.0.samples a three-dimensional array of posterior predictive samples for the latent spatial
random effects.
run.time execution time reported using proc. time().
When type = 'detection’, the list consists of:
p.0.samples a three-dimensional array of posterior predictive samples for the detection prob-
ability values.
run.time execution time reported using proc. time().
The return object will include additional objects used for standard extractor functions.
Note
When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.
Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)

Simulate Data ——----—=———==————-——— -
X <=7
Ly <=7
<-J.x*Jy
.rep <- sample(2:4, size = J, replace = TRUE)
<-5
Community-level covariate effects
Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- ¢(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
betal, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betalil))
3
for (i in 1:p.det) {
alphal[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sqg.alphal[il))
3
phi <- runif(N, 3/1, 3/.4)
sigma.sq <- runif(N, 0.3, 3)
sp <- TRUE

HOHZ D G H

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential')

# Number of batches

n.batch <- 30

# Batch length

batch.length <- 25

n.samples <- n.batch * batch.length

# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]

# Occupancy covariates

X <- dat$X[-pred.indx, ]

# Coordinates

coords <- as.matrix(dat$coords[-pred.indx, 1)
# Detection covariates

X.p <- dat$X.p[-pred.indx, , ]

# Prediction values

X.0 <- dat$X[pred.indx, 1]

coords.@ <- as.matrix(dat$coords[pred.indx, 1)
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psi.0@ <- dat$psil[, pred.indx]

# Package all data into a lis
occ.covs <- X[, 2, drop = FAL
colnames(occ.covs) <- c('occ.
det.covs <- list(det.cov.1 =
det.cov.2 = X.p[, , 3]
)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

# Priors

prior.list <- list(beta.comm.normal = list(mean = @, var

alpha.comm.normal = list(m
tau.sq.beta.ig = list(a =
tau.sq.alpha.ig = list(a =
phi.unif = list(a = 3/1, b
sigma.sq.ig = list(a = 2,
# Starting values
inits.list <- list(alpha.comm
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
phi = 3 / .5,
sigma.sq = 2,
w = matrix(@, nrow = N,
z = apply(y, c(1, 2), m
# Tuning
tuning.list <- list(phi = 1)

out <- spMsPGOcc(occ.formula
det.formula = ~ det.cov.1 +
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential”,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 500,
n.thin = 1)

t

SE]

cov')

X.p[, , 21,

ean = @, var = 2.72),

0.1, b =0.1),
0.1, b = 0.1),
=3/.1),

b =2))

:Q’

ncol = nrow(X)),
ax, na.rm = TRUE))

= ~ occ.cov,
det.cov.2,

2.72),

predict.spMsPGOcc
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summary (out, level = 'both')

# Predict at new locations -----------—--—--——-——-——-——— o
out.pred <- predict(out, X.0, coords.@, verbose = FALSE)

predict.spPGOcc

Function for prediction at new locations for single-species spatial oc-
cupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘spPGOcc*. Prediction is possible for both the latent occupancy state as well as detection.

Usage

## S3 method for class 'spPGOcc'
predict(object, X.0, coords.@, n.omp.threads = 1, verbose = TRUE,
n.report = 100, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object
X.0

coords. @

n.omp.threads

verbose

ignore.RE

an object of class spPGOcc

the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection") por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in spPGOcc. Columns should correspond
to the order of how covariates were specified in the corresponding formula ar-
gument of spPGOcc. Column names of the random effects must match the name
of the random effects, if specified in the corresponding formula argument of
spPGOcc.

the spatial coordinates corresponding to X.@. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.
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n.report the interval to report sampling progress.
type a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.
currently no additional arguments
Value
A list object of class predict.spPGOcc. When type = 'occupancy ', the list consists of:
psi.@.samples a coda object of posterior predictive samples for the latent occurrence probabil-
ity values.
z.0.samples a coda object of posterior predictive samples for the latent occurrence values.
w.0.samples a coda object of posterior predictive samples for the latent spatial random ef-
fects.
run.time execution time reported using proc. time().
When type = 'detection’, the list consists of:
p.0.samples a coda object of posterior predictive samples for the detection probability values.
run.time execution time reported using proc. time().
The return object will include additional objects used for standard extractor functions.
Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References

Hooten, M. B., and Hefley, T. J. (2019). Bringing Bayesian models to life. CRC Press.
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Examples

set.seed(400)

# Simulate Data ————=—=—=—=—=——=——— -

J.x <- 8

J.y <-8

J<-J.x*Jy

n.rep <- sample(2:4, J, replace = TRUE)

beta <- c(0.5, 2)

p.occ <- length(beta)

alpha <- c(o, 1)

p.det <- length(alpha)

phi <- 3/ .6

sigma.sq <- 2

dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential')

# Split into fitting and prediction data set

pred.indx <- sample(1:J, round(J * .5), replace = FALSE)

y <- dat$y[-pred.indx, ]

# Occupancy covariates

X <- dat$X[-pred.indx, 1]

# Prediction covariates

X.0 <- dat$X[pred.indx, 1]

# Detection covariates

X.p <- dat$X.p[-pred.indx, , 1]

coords <- as.matrix(dat$coords[-pred.indx, 1)

coords.® <- as.matrix(dat$coords[pred.indx, 1)

psi.0 <- dat$psilpred.indx]

w.0 <- dat$w[pred.indx]

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.iter <- n.batch * batch.length

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
sigma.sq.ig = c(2, 2),
phi.unif = c¢(3/1, 3/.1))

# Initial values

inits.list <- list(alpha = @, beta = 0,
phi =3/ .5,
sigma.sq = 2,

81
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w = rep(@, nrow(X)),
apply(y, 1, max, na.rm = TRUE))

N
1

# Tuning
tuning.list <- list(phi = 1)

out <- spPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = FALSE,
n.neighbors = 15,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1)

summary (out)

# Predict at new locations -----------------——-——-——-——-——— -
out.pred <- predict(out, X.0, coords.@, verbose = FALSE)

predict.stPGOcc Function for prediction at new locations for multi-season single-
species spatial occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘stPGOcc‘. Prediction is possible for both the latent occupancy state as well as detection.
Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'stPGOcc'
predict(object, X.0, coords.@, t.cols, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object an object of class stPGOcc
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X.0

coords. @

t.cols

n.omp. threads

verbose

ignore.RE

n.report

type

Value

83

the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
of the levels should match the ordering used to fit the data in stPGOcc. The
covariates should be organized in the same order as they were specified in the
corresponding formula argument of stPGOcc. Names of the third dimension
(covariates) of any random effects in X.0 must match the name of the random
effects used to fit the model, if specified in the corresponding formula argument
of stPGOcc. See example below.

the spatial coordinates corresponding to X.@. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.®). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

logical value that specifies whether or not to remove random unstructured occur-
rence (or detection if type = 'detection') effects from the subsequent predic-
tions. If TRUE, random effects will be included. If FALSE, unstructured random
effects will be set to 0 and predictions will only be generated from the fixed ef-
fects, the spatial random effects, and AR(1) random effects if the model was fit
with ar1 = TRUE.

the interval to report sampling progress.

a quoted keyword indicating what type of prediction to produce. Valid keywords
are ’occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

currently no additional arguments

A list object of class predict.stPGOcc. When type = 'occupancy ', the list consists of:

psi.@.samples

a three-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, site, and primary time period.
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z.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample, site,
and primary time period.
w.0.samples a coda object of posterior predictive samples for the latent spatial random ef-

fects.
When type = 'detection’, the list consists of:

p.0.samples a three-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,
site, and primary time period.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples
portions of the output list from the model object of class stPGOcc.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(500)
Sites
X <- 10
.y <- 10
<-J.x*xJy
Primary time periods
.time <- sample(10, J, replace = TRUE)
.time.max <- max(n.time)
Replicates
.rep <- matrix(NA, J, max(n.time))
for (j in 1:J7) {
n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
3
# Occurrence -—-------—-——-——-——--——--——--
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- @
psi.RE <- list()

5 #3555 # U UGy H
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# Detection --—--------——---—---——--——-
alpha <- c¢(-1, 0.7, -0.5)

p.RE <- list()

# Spatial --------------------ooommoo -
sp <- TRUE

cov.model <- "exponential”

sigma.sq <- 2

phi <- 3/ .4

# Get all the data

dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, cov.model = cov.model, ar1 = FALSE)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)

y <- dat$yl[-pred.indx, , , drop = FALSE]

# Occupancy covariates

X <- dat$X[-pred.indx, , , drop = FALSE]

# Prediction covariates

X.0 <- dat$X[pred.indx, , , drop = FALSE]

# Detection covariates

X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]

psi.0@ <- dat$psil[pred.indx, ]

# Coordinates

coords <- dat$coords[-pred.indx, ]
coords.@ <- dat$coords[pred.indx, ]

# Package all data into a list

# Occurrence

occ.covs <- list(int = X[, , 11,
trend = X[, , 21,
occ.cov.1 = X[, , 31

# Detection

det.covs <- list(det.cov.1
det.cov.2

# Data list bundle

data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

Xp[, ’ 2]!
X.pl, , , 3D

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
sigma.sq.ig = c(2, 2),
phi.unif = c(3 /1, 3/ 0.1))

# Initial values

z.init <- apply(y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))

inits.list <- list(beta = @, alpha = 0, z = z.init, phi = 3 / .5, sigma.sq = 2,
w = rep(0, J))

# Tuning
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tuning.list <- list(phi = 1)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.iter <- n.batch * batch.length

# Run the model
out <- stPGOcc(occ.formula = ~ trend + occ.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential”,
tuning = tuning.list,
NNGP = TRUE,
arl = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.chains = 1)

summary (out)

# Predict at new sites across all n.max.years

# Take a look at array of covariates for prediction

str(X.0)

# Subset to only grab time periods 1, 2, and 5

t.cols <- c(1, 2, 5)

X.pred <- X.0[, t.cols, ]

out.pred <- predict(out, X.0, coords.@, t.cols = t.cols, type = 'occupancy')
str(out.pred)

predict.svcPGBinom Function for prediction at new locations for single-species spatially-
varying coefficient Binomial models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘svcPGBinom".

Usage

## S3 method for class 'svcPGBinom'
predict(object, X.0, coords.®, weights.@, n.omp.threads = 1, verbose = TRUE,
n.report = 100, ignore.RE = FALSE, ...)
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Arguments

object
X.0

coords. @

weights.0

n.omp.threads

verbose

ignore.RE

n.report

Value

87

an object of class svcPGBinom

the design matrix of covariates at the prediction locations. Note that for spatially-
varying coefficients models the order of covariates in X.@ must be the same as
the order of covariates specified in the model formula. This should include a
column of Is for the intercept if an intercept is included in the model. If un-
structured random effects are included in the model, the levels of the random
effects at the new locations should be included as a column in the design ma-
trix. The ordering of the levels should match the ordering used to fit the data
in svcPGBinom. Columns should correspond to the order of how covariates
were specified in the corresponding formula argument of svcPGBinom. Col-
umn names of the random effects must match the name of the random effects, if
specified in the corresponding formula argument of svcPGBinom.

the spatial coordinates corresponding to X. . Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

a numeric vector containing the binomial weights (i.e., the total number of
Bernoulli trials) at each site. If weights. @ is not specified, we assume 1 trial at
each site (i.e., presence/absence).

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

the interval to report sampling progress.

currently no additional arguments

A list object of class predict.svcPGBinom consisting of:

psi.0.samples
y.0.samples

w.0.samples

run.time

a coda object of posterior predictive samples for the binomial probability values.
a coda object of posterior predictive samples for the binomial data.

a three-dimensional array of posterior predictive samples for the spatial random
effects, with dimensions corresponding to MCMC iteration, coefficient, and site.

execution time reported using proc.time().
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Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)
Jeffrey W. Doser <doser jef@msu.edu>,

Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(1000)

# Sites
J.x <- 10
J.y <- 10

J<-J.x*J.y

# Binomial weights

weights <- sample(10, J, replace = TRUE)
beta <- c(0, 0.5, -0.2, 0.75)

p <- length(beta)

# No unstructured random effects
psi.RE <- list()

# Spatial parameters

sp <- TRUE

# Two spatially-varying covariates.
svc.cols <- c(1, 2)

p.svc <- length(svc.cols)

cov.model <- "exponential”
sigma.sq <- runif(p.svc, 0.4, 1.5)
phi <- runif(p.svc, 3/1, 3/0.2)

# Simulate the data

dat <- simBinom(J.x = J.x, J.y = J.y, weights = weights, beta = beta,
psi.RE = psi.RE, sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi)

# Binomial data

y <- dat$y

# Covariates

X <- dat$x

# Spatial coordinates
coords <- dat$coords

# Subset data for prediction if desired

pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y.0 <- y[pred.indx, drop = FALSE]

X.0 <- X[pred.indx, , drop = FALSE]
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coords.@ <- coords[pred.indx, ]

y <- y[-pred.indx, drop = FALSE]

X <= X[-pred.indx, , drop = FALSE]
coords <- coords[-pred.indx, ]
weights.@ <- weights[pred.indx]
weights <- weights[-pred.indx]

# Package all data into a list

# Covariates

covs <- cbind(X)

colnames(covs) <- c('int', 'cov.1', 'cov.2', 'cov.3')

# Data list bundle

data.list <- list(y =y,
Ccovs = covs,
coords = coords,
weights = weights)

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
sigma.sq.ig = list(a =2, b = 1),
phi.unif = list(a=3/1, b=3/0.1))

# Starting values

inits.list <- list(beta = @, alpha = 0,
sigma.sq = 1, phi = phi)

# Tuning

tuning.list <- list(phi = 1)

n.batch <- 10
batch.length <- 25
n.burn <- 100
n.thin <- 1

out <- svcPGBinom(formula = ~ cov.1 + cov.2 + cov.3,
svc.cols = c(1, 2),
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
cov.model = "exponential”,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,

.neighbors = 5,

n.report = 2,

n.burn = n.burn,

n.thin = n.thin,

n.chains = 1)

=}

I > >

summary (out)
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# Predict at new

predict.svePGOcc

10Cations ————————m

out.pred <- predict(out, X.0, coords.@, weights.@, verbose = FALSE)

str(out.pred)

predict.svcPGOcc

Function for prediction at new locations for single-species spatially-
varying coefficient occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘svcPGOcc*. Prediction is possible for both the latent occupancy state as well as detection.

Usage

## S3 method for class 'svcPGOcc'

predict(object,

X.0, coords.@, weights.@, n.omp.threads = 1, verbose = TRUE,

n.report = 100, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object
X.0

coords. 0

weights.0

n.omp. threads

verbose

an object of class svcPGOcc

the design matrix of covariates at the prediction locations. This should include a
column of 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection") por-
tion of the model, the levels of the random effects at the new locations should
be included as a column in the design matrix. The ordering of the levels should
match the ordering used to fit the data in svcPGOcc. Columns should correspond
to the order of how covariates were specified in the corresponding formula argu-
ment of svcPGOcc. Column names of the random effects must match the name
of the random effects, if specified in the corresponding formula argument of
svcPGOcc.

the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

not used for objects of class svcTPGOcc. Used when calling other functions.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp. threads > 1 might not work on some sys-
tems.

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.
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ignore.RE a logical value indicating whether to include unstructured random effects for
prediction. If TRUE, unstructured random effects will be ignored and prediction
will only use the fixed effects and the spatial random effects. If FALSE, random
effects will be included in the prediction for both observed and unobserved levels
of the unstructured random effects.

n.report the interval to report sampling progress.

type a quoted keyword indicating what type of prediction to produce. Valid keywords
are occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

currently no additional arguments

Value

A list object of class predict.svcPGOcc. When type = 'occupancy', the list consists of:

psi.0@.samples a coda object of posterior predictive samples for the latent occurrence probabil-

ity values.
z.0.samples a coda object of posterior predictive samples for the latent occurrence values.
w.0.samples a three-dimensional array of posterior predictive samples for the spatial random

effects, with dimensions corresponding to MCMC iteration, coefficient, and site.

run.time execution time reported using proc. time().
When type = 'detection’, the list consists of:

p.0.samples a coda object of posterior predictive samples for the detection probability values.

run.time execution time reported using proc. time().

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of random effects are sup-
ported for prediction. For sampled levels, the posterior distribution for the random intercept corre-
sponding to that level of the random effect will be used in the prediction. For non-sampled levels,
random values are drawn from a normal distribution using the posterior samples of the random effect
variance, which results in fully propagated uncertainty in predictions with models that incorporate
random effects.

Author(s)
Jeffrey W. Doser <doserjef@msu.edu>,

Andrew O. Finley <finleya@msu.edu>

References

Hooten, M. B., and Hefley, T. J. (2019). Bringing Bayesian models to life. CRC Press.
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Examples

set.seed(400)

# Simulate Data ————=—=—=—=—=——=——— -

J.x <- 8

J.y <-8

J<-J.x*Jy

n.rep <- sample(2:4, J, replace = TRUE)

beta <- c(0.5, 2)

p.occ <- length(beta)

alpha <- c(o, 1)

p.det <- length(alpha)

phi <- c(3 /7 .6, 3/ .8)

sigma.sq <- c(0.5, 0.9)

svc.cols <- c(1, 2)

dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential',
svc.cols = svc.cols)

# Split into fitting and prediction data set

pred.indx <- sample(1:J, round(J * .5), replace = FALSE)

y <- dat$y[-pred.indx, ]

# Occupancy covariates

X <- dat$X[-pred.indx, ]

# Prediction covariates

X.0 <- dat$X[pred.indx, ]

# Detection covariates

X.p <- dat$X.p[-pred.indx, , ]

coords <- as.matrix(dat$coords[-pred.indx, 1)

coords.@ <- as.matrix(dat$coords[pred.indx, 1)

psi.® <- dat$psilpred.indx]

w.0 <- dat$wl[pred.indx, , drop = FALSE]

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.iter <- n.batch * batch.length

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
sigma.sq.ig = list(a = 2, b = 0.5),
phi.unif = list(a = 3/1, b = 3/.1))

# Initial values

inits.list <- list(alpha = 0, beta = 0,
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phi =3 / .5,

sigma.sq = 0.5,

z = apply(y, 1, max, na.rm = TRUE))
# Tuning
tuning.list <- list(phi = 1)

out <- svcPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
svc.cols = c(1, 2),
n.neighbors = 15,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1)

summary (out)

# Predict at new locations ---------------——---——--———--———————— oo
out.pred <- predict(out, X.@, coords.@, verbose = FALSE)

predict.svcTPGBinom Function for prediction at new locations for multi-season single-
species spatially-varying coefficient binomial models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘svcTPGBinom‘. Prediction is possible for both the latent occupancy state as well
as detection. Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'svcTPGBinom'
predict(object, X.@, coords.®, t.cols, weights.®, n.omp.threads =1,
verbose = TRUE, n.report = 100, ignore.RE = FALSE, ...)
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Arguments

object
X.0

coords. @

weights.0

t.cols

n.omp. threads

verbose

ignore.RE

n.report

Value

predict.sveTPGBinom

an object of class svcTPGBinom

the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
of the levels should match the ordering used to fit the data in svcTPGBinom.
The covariates should be organized in the same order as they were specified
in the corresponding formula argument of svcTPGBinom. Names of the third
dimension (covariates) of any random effects in X.0 must match the name of the
random effects used to fit the model, if specified in the corresponding formula
argument of svcTPGBinom. See example below.

the spatial coordinates corresponding to X.@. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

a numeric site by primary time period matrix containing the binomial weights
(i.e., the total number of Bernoulli trials) at each site and primary time period.
If weights. @ is not specified, we assume 1 trial at each site/primary time period
(i.e., presence/absence).

an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.®). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

logical value that specifies whether or not to remove random unstructured occur-
rence (or detection if type = 'detection') effects from the subsequent predic-
tions. If TRUE, random effects will be included. If FALSE, unstructured random
effects will be set to 0 and predictions will only be generated from the fixed ef-
fects, the spatial random effects, and AR(1) random effects if the model was fit
with ar1 = TRUE.

the interval to report sampling progress.

currently no additional arguments

A list object of class predict.svcTPGBinom that consists of:
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psi.@.samples a three-dimensional object of posterior predictive samples for the occurrence
probability values with dimensions corresponding to posterior predictive sam-
ple, site, and primary time period.

y.0.samples a three-dimensional object of posterior predictive samples for the predicted bi-
nomial data with dimensions corresponding to posterior predictive sample, site,
and primary time period.

w.0.samples a three-dimensional array of posterior predictive samples for the spatial random
effects, with dimensions corresponding to MCMC iteration, coefficient, and site.
run.time execution time reported using proc. time().
Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary time
periods are obtained directly when fitting the model. See the psi.samples and y.rep.samples
portions of the output list from the model object of class svcTPGBinom.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(1000)
# Sites
J.x <= 15
J.y <= 15
J<-J.x=*J.y
# Years sampled
n.time <- sample(1@, J, replace = TRUE)
# Binomial weights
weights <- matrix(NA, J, max(n.time))
for (j in 1:7) {
weights[j, 1:n.time[j]] <- sample(5, n.time[j], replace = TRUE)
3
# Occurrence ------=---=--=---=-----------
beta <- c(-2, -0.5, -0.2, 0.75)
p.occ <- length(beta)
trend <- TRUE
sp.only <- @
psi.RE <- list()
# Spatial parameters ------------—------
sp <- TRUE
svc.cols <- c(1, 2, 3)
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p.svc <~ length(svc.cols)

cov.model <- "exponential”

sigma.sq <- runif(p.svc, 0.1, 1)

phi <- runif(p.svc, 3/1, 3/0.2)

# Temporal parameters -----------------
ar1 <- TRUE

rho <- 0.8

sigma.sq.t <- 1

# Get all the data
dat <- simTBinom(J.x = J.x, J.y = J.y, n.time = n.time, weights = weights, beta = beta,
psi.RE = psi.RE, sp.only = sp.only, trend = trend,
sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
rho = rho, sigma.sq.t = sigma.sq.t, arl = TRUE, x.positive = FALSE)

# Prep the data for spOccupancy ------------=--——--———--————————— -
# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)

y <- dat$y[-pred.indx, , drop = FALSE]
y.0 <- dat$y[pred.indx, , drop = FALSE]
# Occupancy covariates

X <- dat$X[-pred.indx, , , drop = FALSE]
# Prediction covariates

X.0 <- dat$X[pred.indx, , , drop = FALSE]
# Spatial coordinates

coords <- as.matrix(dat$coords[-pred.indx, 1)
coords.® <- as.matrix(dat$coords[pred.indx, 1)
psi.@ <- dat$psilpred.indx, ]

w.0 <- dat$wlpred.indx, ]

weights.@ <- weights[pred.indx, ]

weights <- weights[-pred.indx, ]

# Package all data into a list
covs <- list(int = X[, , 11,
trend = X[, , 21,
cov.1 = X[, , 31,
cov.2 = X[, , 41
# Data list bundle
data.list <- list(y =y,
COovVS = covs,
weights = weights,
coords = coords)

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
sigma.sq.ig = list(a =2, b = 1),
phi.unif = list(a = 3/1, b = 3/.1))

# Starting values
inits.list <- list(beta = beta, alpha = 0,
sigma.sq = 1, phi =3/ 0.5, nu =1)
# Tuning
tuning.list <- list(phi = 0.4, nu = 0.3, rho = 0.2)
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# MCMC information
n.batch <- 2
n.burn <- @

n.thin <- 1

out <- svcTPGBinom(formula = ~ trend + cov.1 + cov.2,

svc.cols = svc.cols,

data = data.list,

n.batch = n.batch,

batch.length = 25,

inits = inits.list,

priors = prior.list,

accept.rate = 0.43,

cov.model = "exponential”,

ar1l = TRUE,

tuning = tuning.list,

n.omp.threads = 1,

verbose = TRUE,

NNGP = TRUE,

n.neighbors = 5,

n.report = 25,

n.burn = n.burn,

n.thin = n.thin,

n.chains = 1)
# Predict at new locations ---------—-——-—--—m—m o
out.pred <- predict(out, X.0, coords.@, t.cols = 1:max(n.time),

weights = weights.@, n.report = 10)
str(out.pred)

predict.svcTPGOcc Function for prediction at new locations for multi-season single-
species spatially-varying coefficient occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an
object of class ‘svcTPGOcc‘. Prediction is possible for both the latent occupancy state as well as
detection. Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'svcTPGOcc'

predict(object, X.0, coords.@, t.cols, weights.@, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
ignore.RE = FALSE, type = 'occupancy', ...)
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Arguments

object
X.0

coords. 0

t.cols

weights.0
n.omp.threads

verbose

ignore.RE

n.report

type

Value

predict.svcTPGOcc

an object of class svcTPGOcc

the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist of
all 1s for the intercept if an intercept is included in the model. If random effects
are included in the occupancy (or detection if type = 'detection') portion of
the model, the levels of the random effects at the new locations/time periods
should be included as an element of the three-dimensional array. The ordering
of the levels should match the ordering used to fit the data in svcTPGOcc. The
covariates should be organized in the same order as they were specified in the
corresponding formula argument of svcTPGOcc. Names of the third dimension
(covariates) of any random effects in X.0 must match the name of the random
effects used to fit the model, if specified in the corresponding formula argument
of svcTPGOcc. See example below.

the spatial coordinates corresponding to X.0. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.®). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.

not used for objects of class svcTPGOcc. Used when calling other functions.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, model specification and progress of the sampler is printed to the screen.
Otherwise, nothing is printed to the screen.

logical value that specifies whether or not to remove random unstructured occur-
rence (or detection if type = 'detection') effects from the subsequent predic-
tions. If TRUE, random effects will be included. If FALSE, unstructured random
effects will be set to 0 and predictions will only be generated from the fixed ef-
fects, the spatial random effects, and AR(1) random effects if the model was fit
with ar1 = TRUE.

the interval to report sampling progress.

a quoted keyword indicating what type of prediction to produce. Valid keywords
are “occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

currently no additional arguments

A list object of class predict.svcTPGOcc. When type = 'occupancy ', the list consists of:
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psi.@.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, site, and primary time period.

z.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample, site,
and primary time period.

w.0.samples a three-dimensional array of posterior predictive samples for the spatial random
effects, with dimensions corresponding to MCMC iteration, coefficient, and site.

When type = 'detection’, the list consists of:

p.0.samples a three-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,
site, and primary time period.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models
that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples
portions of the output list from the model object of class svcTPGOcc.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(500)
Sites
X <= 10
.y <- 10
<-J.x*xJ.y
Primary time periods
.time <- sample(10, J, replace = TRUE)
.time.max <- max(n.time)
Replicates
.rep <- matrix(NA, J, max(n.time))
for (3 in 1:J7) {
n.replj, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
3

# Occurrence —--------———————-—————————-

S5 H 5 S H 9 9 9 HF
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beta <- ¢(0.4, 0.5, -0.9)

trend <- TRUE

sp.only <- @

psi.RE <- list()

# Detection -----———-———————-———m———m——
alpha <- c¢c(-1, 0.7, -0.5)

p.RE <- list()

# Spatial --------—--—————
svc.cols <- c(1, 2)

p.svc <- length(svc.cols)

sp <- TRUE

cov.model <- "exponential”

sigma.sq <- runif(p.svc, 0.1, 1)

phi <- runif(p.svc, 3/ .9, 3/ .1)

# Get all the data

dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, cov.model = cov.model, ar1l = FALSE, svc.cols = svc.cols)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)

y <- dat$y[-pred.indx, , , drop = FALSE]

# Occupancy covariates

X <- dat$X[-pred.indx, , , drop = FALSE]

# Prediction covariates

X.0 <- dat$X[pred.indx, , , drop = FALSE]

# Detection covariates

X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]

psi.0@ <- dat$psilpred.indx, ]

# Coordinates

coords <- dat$coords[-pred.indx, ]
coords.@ <- dat$coords[pred.indx, ]

# Package all data into a list

# Occurrence

occ.covs <- list(int = X[, , 11,
trend = X[, , 21,
occ.cov.1 = X[, , 31

# Detection

det.covs <- list(det.cov.1 = X.p[, , , 21,
det.cov.2 = X.p[, , , 31

# Data list bundle

data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
sigma.sq.ig = list(a =2, b = 0.5),
phi.unif = list(a =3 /1, b=37/10.1))
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# Initial values

z.init <- apply(y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))

inits.list <- list(beta = @, alpha = 0, z = z.init, phi = 3 / .5, sigma.sq = 2,
w = rep(0, J))

# Tuning

tuning.list <- list(phi = 1)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.iter <- n.batch * batch.length

# Run the model
out <- svcTPGOcc(occ.formula = ~ trend + occ.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential”,
svc.cols = svc.cols,
tuning = tuning.list,
NNGP = TRUE,
ar1 = FALSE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.chains = 1)

summary (out)

# Predict at new sites across all n.max.years

# Take a look at array of covariates for prediction

str(X.0)

# Subset to only grab time periods 1, 2, and 5

t.cols <- c(1, 2, 5)

X.pred <- X.0[, t.cols, ]

out.pred <- predict(out, X.0, coords.®, t.cols = t.cols, type = 'occupancy')
str(out.pred)

predict.tPGOcc Function for prediction at new locations for multi-season single-
species occupancy models

Description

The function predict collects posterior predictive samples for a set of new locations given an object
of class ‘tPGOcc*. Prediction is possible for both the latent occupancy state as well as detection.
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Predictions are currently only possible for sampled primary time periods.

Usage

## S3 method for class 'tPGOcc'
predict(object, X.0, t.cols, ignore.RE = FALSE, type = 'occupancy', ...)

Arguments

object
X.0

t.cols

ignore.RE

type

Value

an object of class tPGOcc

the design matrix of covariates at the prediction locations. This should be a
three-dimensional array, with dimensions corresponding to site, primary time
period, and covariate, respectively. Note that the first covariate should consist
of all 1s for the intercept if an intercept is included in the model. If random
effects are included in the occupancy (or detection if type = 'detection") por-
tion of the model, the levels of the random effects at the new locations/time
periods should be included as an element of the three-dimensional array. The
ordering of the levels should match the ordering used to fit the data in tPGOcc.
The covariates should be organized in the same order as they were specified in
the corresponding formula argument of tPGOcc. Names of the third dimension
(covariates) of any random effects in X.0 must match the name of the random
effects used to fit the model, if specified in the corresponding formula argument
of tPGOcc. See example below.

an indexing vector used to denote which primary time periods are contained
in the design matrix of covariates at the prediction locations (X.®9). The values
should denote the specific primary time periods used to fit the model. The values
should indicate the columns in data$y used to fit the model for which prediction
is desired. See example below.

logical value that specifies whether or not to remove random unstructured oc-
currence (or detection if type = 'detection') effects from the subsequent pre-
dictions. If TRUE, unstructured random effects will be included. If FALSE, un-
structured random effects will be set to 0 and predictions will only be generated
from the fixed effects and AR(1) random effects if the model was fit with ar1 =
TRUE.

a quoted keyword indicating what type of prediction to produce. Valid keywords
are “occupancy’ to predict latent occupancy probability and latent occupancy
values (this is the default), or ’detection’ to predict detection probability given
new values of detection covariates.

currently no additional arguments

A list object of class predict.tPGOcc. When type = 'occupancy', the list consists of:

psi.@.samples

a three-dimensional object of posterior predictive samples for the latent occu-
pancy probability values with dimensions corresponding to posterior predictive
sample, site, and primary time period.
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z.0.samples a three-dimensional object of posterior predictive samples for the latent occu-
pancy values with dimensions corresponding to posterior predictive sample, site,

and primary time period.

When type = 'detection’, the list consists of:

p.0.samples a three-dimensional object of posterior predictive samples for the detection prob-
ability values with dimensions corresponding to posterior predictive sample,

site, and primary time period.

The return object will include additional objects used for standard extractor functions.

Note

When ignore.RE = FALSE, both sampled levels and non-sampled levels of unstructured random
effects are supported for prediction. For sampled levels, the posterior distribution for the random
intercept corresponding to that level of the random effect will be used in the prediction. For non-
sampled levels, random values are drawn from a normal distribution using the posterior samples of
the random effect variance, which results in fully propagated uncertainty in predictions with models

that incorporate random effects.

Occurrence predictions at sites that are only sampled for a subset of the total number of primary
time periods are obtained directly when fitting the model. See the psi.samples and z.samples

portions of the output list from the model object of class tPGOcc.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(990)

Sites

X <= 10

.y <- 10

<-J.x*xJ.y

Primary time periods

.time <- sample(1@, J, replace = TRUE)
.time.max <- max(n.time)
Replicates

.rep <- matrix(NA, J, max(n.time))
for (3 in 1:7) {

S5 H 5 S H 9 9 9 HF

n.replj, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)

}

# OCCUrrence —-—-—-—-—-—-———————————————
beta <- ¢(0.4, 0.5, -0.9)

trend <- TRUE

sp.only <- @

psi.RE <- list()

# Detection —————————————
alpha <- c(-1, 0.7, -0.5)
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p.RE <- list()

# Get all the data

dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = FALSE, ar1 = FALSE)

# Subset data for prediction
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)

y <- dat$y[-pred.indx, , , drop = FALSE]

# Occupancy covariates

X <- dat$X[-pred.indx, , , drop = FALSE]

# Prediction covariates

X.0 <- dat$X[pred.indx, , , drop = FALSE]

# Detection covariates

X.p <- dat$X.p[-pred.indx, , , , drop = FALSE]

psi.@ <- dat$psilpred.indx, ]

# Package all data into a list

# Occurrence

occ.covs <- list(int = X[, , 11,
trend = X[, , 2],
occ.cov.1 = X[, , 31)

# Detection

det.covs <- list(det.cov.1 = X.p[, , , 2],
det.cov.2 = X.p[, , , 31

# Data list bundle

data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs)

# Priors
prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72))

# Starting values
z.init <- apply(y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(beta = @, alpha = 0, z = z.init)

n.batch <- 100
batch.length <- 25
n.burn <- 2000
n.thin <- 1

# Run the model
out <- tPGOcc(occ.formula = ~ trend + occ.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
priors = prior.list,
n.batch = n.batch,
batch.length = batch.length,
arl = FALSE,
verbose = TRUE,
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n.report = 500,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

# Predict at new sites across during time periods 1, 2, and 5

# Take a look at array of covariates for prediction

str(X.0)

# Subset to only grab time periods 1, 2, and 5

t.cols <- c(1, 2, 5)

X.pred <- X.0[, t.cols, ]

out.pred <- predict(out, X.pred, t.cols = t.cols, type = 'occupancy')
str(out.pred)

sfJSDM Function for Fitting a Spatial Factor Joint Species Distribution Model

Description

The function sfJSDM fits a spatially-explicit joint species distribution model. This model does not
explicitly account for imperfect detection (see sfMsPGOcc()). We use Polya-Gamma latent vari-
ables and a spatial factor modeling approach. Currently, models are implemented using a Nearest
Neighbor Gaussian Process. Future development will allow for running the models using a full
Gaussian Process.

Usage

sfJSDM(formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.factors, n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, k.fold, k.fold.threads = 1, k.fold.seed,

k.fold.only = FALSE, monitors, keep.only.mean.95, ...)
Arguments
formula a symbolic description of the model to be fit for the model using R’s model syn-
tax. Only right-hand side of formula is specified. See example below. Random
intercepts are allowed using Ime4 syntax (Bates et al. 2015).
data a list containing data necessary for model fitting. Valid tags are y, covs, and

coords. y is a two-dimensional array with first dimension equal to the number
of species and second dimension equal to the number of sites. Note how this
differs from other spOccupancy functions in that y does not have any replicate
surveys. This is because sfJSDM does not account for imperfect detection. covs
is a matrix or data frame containing the variables used in the model, with J rows
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for each column (variable). coords is a matrix with J rows and 2 columns con-
sisting of the spatial coordinates of each site in the data. Note that spOccupancy
assumes coordinates are specified in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are beta.comm,
beta, tau.sq.beta, phi, lambda, sigma.sq.psi, and nu. nu is only specified
if cov.model = "matern”. sigma.sq.psi is only specified if random intercepts
are included in formula. The value portion of each tag is the parameter’s initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors alist with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,

tau.sq.beta.ig, phi.unif, nu.unif, and sigma.sq.psi.ig. Community-
level occurrence (beta.comm) regression coefficients are assumed to follow a
normal distribution. The hyperparameters of the normal distribution are passed
as a list of length two with the first and second elements corresponding to the
mean and variance of the normal distribution, which are each specified as vec-
tors of length equal to the number of coefficients to be estimated or of length
one if priors are the same for all coefficients. If not specified, prior means are
set to 0 and prior variances set to 2.73. Community-level variance parameters
(tau.sq.beta) are assumed to follow an inverse Gamma distribution. The hy-
perparameters of the inverse gamma distribution are passed as a list of length
two with the first and second elements corresponding to the shape and scale pa-
rameters, which are each specified as vectors of length equal to the number of
coefficients to be estimated or a single value if priors are the same for all pa-
rameters. If not specified, prior shape and scale parameters are set to 0.1. The
spatial factor model fits n. factors independent spatial processes. The spatial
decay phi and smoothness nu parameters for each latent factor are assumed to
follow Uniform distributions. The hyperparameters of the Uniform are passed as
a list with two elements, with both elements being vectors of length n. factors
corresponding to the lower and upper support, respectively, or as a single value
if the same value is assigned for all factors. The priors for the factor loadings
matrix lambda are fixed following the standard spatial factor model to ensure pa-
rameter identifiability (Christensen and Amemlya 2002). The upper triangular
elements of the N x n. factors matrix are fixed at O and the diagonal elements
are fixed at 1. The lower triangular elements are assigned a standard normal
prior (i.e., mean O and variance 1). sigma.sq.psi is the random effect variance
for any random effects, and is assumed to follow an inverse Gamma distribution.
The hyperparameters of the inverse-Gamma distribution are passed as a list of
length two with first and second elements corresponding to the shape and scale
parameters, respectively, which are each specified as vectors of length equal to
the number of random intercepts or of length one if priors are the same for all
random effect variances.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.
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cov.model

NNGP

n.neighbors

search. type

n.factors

n.batch

batch.length

accept.rate

n.omp. threads

verbose

n.report

n.burn

n.thin

n.chains
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a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
words are: "exponential”, "matern”, "spherical”, and "gaussian”.

if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. For spatial
factor models, only NNGP = TRUE is currently supported.

number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb” and "brute” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

the number of factors to use in the spatial factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

the number of chains to run in sequence.
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k.fold specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold. threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

k.fold.seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

monitors a character vector used to indicate if only a subset of the model model parame-

ters are desired to be monitored. If posterior samples of all parameters are de-
sired, then don’t specify the argument (this is the default). When working with
a large number of species and/or sites, the full model object can be quite large,
and so this argument can be used to only return samples of specific parameters
to help reduce the size of this resulting object. Valid tags include beta.comm,
tau.sq.beta, beta, z, psi, lambda, theta, w, like (used for WAIC calcula-
tion), beta.star, sigma.sq.psi. Note that if all parameters are not returned,
subsequent functions that require the model object may not work. We only rec-
ommend specifying this option when working with large data sets (e.g., > 100
species and > 10,000 sites).

keep.only.mean.95
not currently supported.

currently no additional arguments

Value

An object of class sfJSDM that is a list comprised of:

beta.comm.samples
a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

tau.sq.beta.samples
a coda object of posterior samples for the occurrence community variance pa-
rameters.

beta.samples  a coda object of posterior samples for the species level occurrence regression
coefficients.

theta.samples a coda object of posterior samples for the species level correlation parameters.

lambda.samples a coda object of posterior samples for the latent spatial factor loadings.
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psi.samples a three-dimensional array of posterior samples for the latent occurrence proba-
bility values for each species.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for each latent factor.

sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in formula.

beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in formula.

like.samples a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time MCMC sampler execution time reported using proc. time().

k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k. fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

X <- 8
.y <- 8
<-J.x*xJ.y
.rep<- sample(2:4, size = J, replace = TRUE)
<- 6
Community-level covariate effects
Occurrence
beta.mean <- c(0.2)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6)
# Detection
alpha.mean <- c(0)
tau.sq.alpha <- c(1)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
p.RE <- list()
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
betal, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betalil))
3
for (i in 1:p.det) {
alphal, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sqg.alphalil))
3
alpha.true <- alpha
n.factors <- 3
phi <- rep(3 / .7, n.factors)
sigma.sq <- rep(2, n.factors)
nu <- rep(2, n.factors)
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dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, nu = nu, cov.model = 'matern', factor.model = TRUE,
n.factors = n.factors)

pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
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y <- dat$y[, -pred.indx, , drop = FALSE]

# Occupancy covariates

X <- dat$X[-pred.indx, , drop = FALSE]

coords <- as.matrix(dat$coords[-pred.indx, , drop = FALSE])
# Prediction covariates

X.0 <- dat$X[pred.indx, , drop = FALSE]

coords.@ <- as.matrix(dat$coords[pred.indx, , drop = FALSE])
# Detection covariates

X.p <- dat$X.p[-pred.indx, , , drop = FALSE]

y <= apply(y, c(1, 2), max, na.rm = TRUE)

data.list <- list(y =y, coords = coords)

# Priors

prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
nu.unif = 1ist(0.5, 2.5))

# Starting values

inits.list <- list(beta.comm = 0,

beta = 0,

fix = TRUE,

tau.sq.beta = 1)
# Tuning

tuning.list <- list(phi = 1, nu = 0.25)

batch.length <- 25

n.batch <- 5
n.report <- 100
formula <- ~ 1

out <- sfJSDM(formula = formula,

data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "matern”,
tuning = tuning.list,

n.factors = 3,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 0@,

n.thin = 1,

n.chains =

summary (out)

2)
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sftMsPGOcc

Function for Fitting Spatial Factor Multi-Species Occupancy Models

Description

The function sfMsPGOcc fits multi-species spatial occupancy models with species correlations (i.e.,
a spatially-explicit joint species distribution model with imperfect detection). We use Polya-Gamma
latent variables and a spatial factor modeling approach. Currently, models are implemented using
a Nearest Neighbor Gaussian Process. Future development will allow for running the models using
full Gaussian Processes.

Usage

sfMsPGOcc(occ. formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.factors, n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1,
n.chains = 1, k.fold, k.fold.threads = 1, k.fold.seed,

k.fold.only = FALSE, ...)

Arguments

occ.formula

det.formula

data

inits

a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Random intercepts are allowed using lme4 syn-
tax (Bates et al. 2015). Only right-hand side of formula is specified. See exam-
ple below.

a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords. y is a three-dimensional array with first dimension equal to
the number of species, second dimension equal to the number of sites, and third
dimension equal to the maximum number of replicates at a given site. occ.covs
is a matrix or data frame containing the variables used in the occurrence portion
of the model, with J rows for each column (variable). det.covs is a list of
variables included in the detection portion of the model. Each list element is
a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site. coords is a J X 2 matrix of the observation coordinates. Note
that spOccupancy assumes coordinates are specified in a projected coordinate
system.

a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,
beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
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z, phi, lambda, and nu. nu is only specified if cov.model = "matern”, and
sigma.sq.psi and sigma.sq.p are only specified if random effects are in-
cluded in occ.formula or det.formula, respectively. The value portion of
each tag is the parameter’s initial value. See priors description for definition
of each parameter name. Additionally, the tag fix can be set to TRUE to fix the
starting values across all chains. If fix is not specified (the default), starting
values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,

alpha.comm.normal, tau.sq.beta.ig, tau.sqg.alpha.ig, sigma.sq.psi, sigma.sq.p,
phi.unif, and nu.unif. Community-level occurrence (beta.comm) and detec-
tion (alpha.comm) regression coefficients are assumed to follow a normal dis-
tribution. The hyperparameters of the normal distribution are passed as a list
of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if pri-
ors are the same for all coefficients. If not specified, prior means are set to 0 and
prior variances set to 2.73. Community-level variance parameters for occupancy
(tau.sq.beta) and detection (tau. sq.alpha) are assumed to follow an inverse
Gamma distribution. The hyperparameters of the inverse gamma distribution
are passed as a list of length two with the first and second elements correspond-
ing to the shape and scale parameters, which are each specified as vectors of
length equal to the number of coefficients to be estimated or a single value if
priors are the same for all parameters. If not specified, prior shape and scale
parameters are set to 0.1. The spatial factor model fits n. factors independent
spatial processes. The spatial decay phi and smoothness nu parameters for each
latent factor are assumed to follow Uniform distributions. The hyperparameters
of the Uniform are passed as a list with two elements, with both elements being
vectors of length n.factors corresponding to the lower and upper support, re-
spectively, or as a single value if the same value is assigned for all factors. The
priors for the factor loadings matrix 1ambda are fixed following the standard spa-
tial factor model to ensure parameter identifiability (Christensen and Amemlya
2002). The upper triangular elements of the N x n. factors matrix are fixed at
0 and the diagonal elements are fixed at 1. The lower triangular elements are
assigned a standard normal prior (i.e., mean O and variance 1). sigma.sq.psi
and sigma.sq.p are the random effect variances for any occurrence or detec-
tion random effects, respectively, and are assumed to follow an inverse Gamma
distribution. The hyperparameters of the inverse-Gamma distribution are passed
as a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key
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words are: "exponential”, "matern”, "spherical”, and "gaussian".

if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. For spatial
factor models, only NNGP = TRUE is currently supported.

number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb"” and "brute” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

the number of factors to use in the spatial factor model approach. Typically, the
number of factors is set to be small (e.g., 4-5) relative to the total number of
species in the community, which will lead to substantial decreases in computa-
tion time. However, the value can be anywhere between 1 and N (the number of
species in the community).

the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

the number of chains to run in sequence.
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k.fold

k.fold.threads

k.fold.seed

k.fold.only

Value
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specifies the number of k folds for cross-validation. If not specified as an argu-
ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

An object of class sfMsPGOcc that is a list comprised of:

beta.comm.samples

a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples

a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples

a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples

beta.samples

alpha.samples

theta.samples
lambda. samples

z.samples

psi.samples

a coda object of posterior samples for the detection community variance param-
eters.

a coda object of posterior samples for the species level occurrence regression
coefficients.

a coda object of posterior samples for the species level detection regression
coefficients.

a coda object of posterior samples for the species level correlation parameters.
a coda object of posterior samples for the latent spatial factor loadings.

a three-dimensional array of posterior samples for the latent occurrence values
for each species.

a three-dimensional array of posterior samples for the latent occupancy proba-
bility values for each species.
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w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for each latent factor.

sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ. formula.

sigma.sq.p.samples
a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.

beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.

alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det. formula.

like.samples  a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time MCMC sampler execution time reported using proc. time().

k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k. fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)
Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)

Simulate Data ———-—=====—====———m e
X <=7
Ly <=7
<-J.x*xJ.y
.rep <- sample(2:4, size = J, replace = TRUE)
<- 8
Community-level covariate effects
Occurrence
beta.mean <- ¢(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Random effects
psi.RE <- list()
# Include a non-spatial random effect on occurrence
psi.RE <- list(levels = c(20),
sigma.sqg.psi = c(0.5))

p.RE <- list()
# Include a random effect on detection
p.RE <- list(levels = c(40),

sigma.sq.p = c(2))
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, il <- rnorm(N, beta.mean[i], sqrt(tau.sq.betal[i]))
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}
for (i in 1:p.det) {
alphal, il <- rnorm(N, alpha.mean[i], sqrt(tau.sqg.alphalil))
}
n.factors <- 4
phi <- runif(n.factors, 3/1, 3/.4)

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sp = TRUE, cov.model = 'exponential',
factor.model = TRUE, n.factors = n.factors, psi.RE = psi.RE,
p.RE = p.RE)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.samples <- n.batch * batch.length

y <- dat$y

X <- dat$X

X.p <- dat$X.p

X.p.re <- dat$X.p.re

X.re <- dat$X.re

coords <- as.matrix(dat$coords)

# Package all data into a list
occ.covs <- chind(X, X.re)
colnames(occ.covs) <- c('int', 'occ.cov', 'occ.re')
det.covs <- list(det.cov.1 = X.p[, , 21,
det.cov.2 = X.p[, , 31,
det.re = X.p.re[, , 11)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
alpha.comm.normal = list(mean = @, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1))
# Initial values
lambda.inits <- matrix(@, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))

inits.list <- list(alpha.comm = 0,
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
phi =3/ .5,
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lambda = lambda.inits,

z = apply(y, c(1, 2), max, na.rm = TRUE))
# Tuning
tuning.list <- list(phi = 1)

out <- sfMsPGOcc(occ.formula = ~ occ.cov + (1 | occ.re),
det.formula = ~ det.cov.1 + det.cov.2 + (1 | det.re),
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = "exponential”,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.factors = n.factors,

search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1,

n.chains = 1)

summary (out)

simBinom Simulate Single-Species Binomial Data
Description

The function simBinom simulates single-species binomial data for simulation studies, power assess-
ments, or function testing. Data can be optionally simulated with a spatial Gaussian Process in the
model. Non-spatial random intercepts can also be included in the model.

Usage

simBinom(J.x, J.y, weights, beta, psi.RE = list(),
sp = FALSE, svc.cols = 1, cov.model, sigma.sq, phi, nu,

Xx.positive = FALSE, ...)
Arguments
J.x a single numeric value indicating the number of sites to simulate data along the
horizontal axis. Total number of sites with simulated data is J.x x J.y.
J.y a single numeric value indicating the number of sites to simulate data along the

vertical axis. Total number of sites with simulated data is J.x x J.y.
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weights

beta

psi.RE

sp

svc.cols

cov.model

sigma.sq

phi

nu

X.positive

Value

simBinom

a numeric vector of length J = J.x x J.y indicating the number of Bernoulli
trials at each of the .J sites.

a numeric vector containing the intercept and regression coefficient parameters
for the model.

a list used to specify the non-spatial random intercepts included in the model.
The list must have two tags: levels and sigma.sq.psi. levels is a vector of
length equal to the number of distinct random intercepts to include in the model
and contains the number of levels there are in each intercept. sigma.sq.psi is
a vector of length equal to the number of distinct random intercepts to include
in the model and contains the variances for each random effect. If not specified,
no random effects are included in the model.

a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential”, "matern”, "spherical”, and
"gaussian”.

a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE. If svc.cols has more than one value, there should be a distinct spatial
variance parameter for each spatially-varying coefficient.

a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE. If svc.cols has more than one value, there should be a distinct spatial
decay parameter for each spatially-varying coefficient.

anumeric value indicating the spatial smoothness parameter. Only used when sp
= TRUE and cov.model = "matern”. If svc. cols has more than one value, there
should be a distinct spatial smoothness parameter for each spatially-varying co-
efficient.

a logical value indicating whether the simulated covariates should be simulated
as random standard normal covariates (x.positive = FALSE) or restricted to
positive values using a uniform distribution with lower bound 0 and upper bound
1 (x.positive = TRUE).

currently no additional arguments

A list comprised of:

X

coords

a J X p.occ numeric design matrix for the model.

a J x 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.
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beta.star
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a matrix of the spatial random effect values for each site. The number of columns
is determined by the svc. cols argument (the number of spatially-varying coef-
ficients).

a J x 1 matrix of the binomial probabilities for each site.
a length J vector of the binomial data for each site.

a two dimensional matrix containing the covariate effects (including an inter-
cept) whose effects are assumed to be spatially-varying. Rows correspond to
sites and columns correspond to covariate effects.

a numeric matrix containing the levels of any unstructured random effect in-
cluded in the model. Only relevant when random effects are specified in psi . RE.

a numeric vector that contains the simulated random effects for each given level
of the random effects included in the model. Only relevant when random effects
are included in the model.

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

J.x <- 10

J.y <- 10

weights <- rep(4, J.x x J.y)

beta <- c(0.5, -0.15)

svc.cols <- c(1, 2)

phi <- c(3/ .6, 3/ 0.2)

sigma.sq <- c(1.2, 0.9)

psi.RE <- list(levels = 10,
sigma.sq.psi = 1.2)

dat <- simBinom(J.x = J.x, J.y = J.y, weights
psi.RE = psi.RE, sp = TRUE, svc.cols

weights, beta = beta,

= svc.cols,

cov.model = 'spherical', sigma.sq = sigma.sq, phi = phi)

simIntOcc
Data Sources

Simulate Single-Species Detection-Nondetection Data from Multiple

Description

The function simIntOcc simulates single-species detection-nondetection data from multiple data
sources for simulation studies, power assessments, or function testing of integrated occupancy mod-
els. Data can optionally be simulated with a spatial Gaussian Process on the occurrence process.
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Usage

simIntOcc

simIntOcc(n.data, J.x, J.y, J.obs, n.rep, n.rep.max, beta, alpha,

Arguments

n.data

J.x

J.y

J.obs

n.rep

n.rep.max

beta

alpha

Sp

cov.model

sigma.sq
phi

nu

sp = FALSE, cov.model, sigma.sq, phi, nu, ...)

an integer indicating the number of detection-nondetection data sources to sim-
ulate.

a single numeric value indicating the number of sites across the region of interest
along the horizontal axis. Total number of sites across the simulated region of
interest is J.z X J.y.

a single numeric value indicating the number of sites across the region of interest
along the vertical axis. Total number of sites across the simulated region of
interest is J.z X J.y.

a numeric vector of length n.data containing the number of sites to simulate
each data source at. Data sources can be obtained at completely different sites,
the same sites, or anywhere inbetween. Maximum number of sites a given data
source is available at is equal to J = J.x x J.y.

a list of length n.data. Each element is a numeric vector with length corre-
sponding to the number of sites that given data source is observed at (in J. obs).
Each vector indicates the number of repeat visits at each of the sites for a given
data source.

a vector of numeric values indicating the maximum number of replicate surveys
for each data set. This is an optional argument, with its default value set to
max(n.rep) for each data set. This can be used to generate data sets with differ-
ent types of missingness (e.g., simulate data across 20 days (replicate surveys)
but sites are only sampled a maximum of ten times each).

a numeric vector containing the intercept and regression coefficient parameters
for the occurrence portion of the single-species occupancy model.

a list of length n.data. Each element is a numeric vector containing the in-
tercept and regression coefficient parameters for the detection portion of the
single-species occupancy model for each data source.

a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential”, "matern”, "spherical”, and
"gaussian".

a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

a numeric value indicating the spatial range parameter. Ignored when sp =
FALSE.

a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern”.

currently no additional arguments
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Value
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A list comprised of:

X.obs

X.pred

X.p

coords.obs

coords.pred

D.obs
D.pred

w.obs

w.pred

psi.obs
psi.pred
z.obs
z.pred

p

y

Author(s)

a numeric design matrix for the occurrence portion of the model. This matrix
contains the intercept and regression coefficients for only the observed sites.

a numeric design matrix for the occurrence portion of the model at sites where
there are no observed data sources.

a list of design matrices for the detection portions of the integrated occupancy
model. Each element in the list is a design matrix of detection covariates for
each data source.

a numeric matrix of coordinates of each observed site. Required for spatial
models.

a numeric matrix of coordinates of each site in the study region without any data
sources. Only used for spatial models.

a distance matrix of observed sites. Only used for spatial models.

a distance matrix of sites in the study region without any observed data. Only
used for spatial models.

a matrix of the spatial random effects at observed locations. Only used to simu-
late data when sp = TRUE

a matrix of the spatial random random effects at locations without any observa-
tion.

a matrix of the occurrence probabilities for each observed site.

a matrix of the occurrence probabilities for sites without any observations.

a vector of the latent occurrence states at each observed site.

a vector of the latent occurrence states at each site without any observations.
a list of detection probability matrices for each of the n.data data sources.

a list of matrices of the raw detection-nondetection data for each site and repli-
cate combination.

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

# Simulate Data

J.x <= 15
J.y <= 15

J.all <- J.x * J.y
# Number of data sources.
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.data <- 4
Sites for each data source.
.0bs <- sample(ceiling(@.2 x J.all):ceiling(@.5 * J.all), n.data, replace = TRUE)
Replicates for each data source.
.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
3
# Occupancy covariates
beta <- c(0.5, 1, -3)
p.occ <- length(beta)
# Detection covariates
alpha <- list()
for (i in 1:n.data) {
alphal[i]] <- runif(sample(1:4, 1), -1, 1)
}
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2
phi <- 3/ .5
sp <- TRUE

S5 H < H S

# Simulate occupancy data.

dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,
n.rep = n.rep, beta = beta, alpha = alpha, sp = TRUE,
cov.model = 'gaussian', sigma.sq = sigma.sq, phi = phi)

simMsOcc Simulate Multi-Species Detection-Nondetection Data

Description

The function simMsOcc simulates multi-species detection-nondetection data for simulation studies,
power assessments, or function testing. Data can be optionally simulated with a spatial Gaussian
Process in the occurrence portion of the model, as well as an option to allow for species correla-
tions using a factor modeling approach. Non-spatial random intercepts can also be included in the
detection or occurrence portions of the occupancy model.

Usage

simMsOcc(J.x, J.y, n.rep, n.rep.max, N, beta, alpha, psi.RE = list(),
p.RE = list(), sp = FALSE, cov.model, sigma.sq, phi, nu,
factor.model = FALSE, n.factors, ...)

Arguments

J.x a single numeric value indicating the number of sites to simulate detection-
nondetection data along the horizontal axis. Total number of sites with simulated
datais J.x x J.y.
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J.y a single numeric value indicating the number of sites to simulate detection-
nondetection data along the vertical axis. Total number of sites with simulated
datais J.x x J.y.

n.rep a numeric vector of length J = J.z x J.y indicating the number of repeat visits
at each of the J sites.

n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

N a single numeric value indicating the number of species to simulate detection-
nondetection data.

beta anumeric matrix with N rows containing the intercept and regression coefficient
parameters for the occurrence portion of the multi-species occupancy model.
Each row corresponds to the regression coefficients for a given species.

alpha anumeric matrix with N rows containing the intercept and regression coefficient
parameters for the detection portion of the multi-species occupancy model. Each
row corresponds to the regression coefficients for a given species.

psi.RE a list used to specify the non-spatial random intercepts included in the occur-
rence portion of the model. The list must have two tags: levels and sigma.sq.psi.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each inter-
cept. sigma.sq.psi is a vector of length equal to the number of distinct random
intercepts to include in the model and contains the variances for each random
effect. If not specified, no random effects are included in the occurrence portion
of the model.

p.RE a list used to specify the non-spatial random intercepts included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.p is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the detection
portion of the model.

sp a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

cov.model a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential”, "matern”, "spherical”, and
"gaussian".

sigma.sq a numeric vector of length NV containing the spatial variance parameter for each
species. Ignored when sp = FALSE or when factor.model = TRUE.

phi a numeric vector of length /N containing the spatial decay parameter for each
species. Ignored when sp = FALSE. If factor.model = TRUE, this should be of
length n. factors.
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nu

factor.model

n.factors

Value

simMsOcc

a numeric vector of length [NV containing the spatial smoothness parameter for
each species. Only used when sp = TRUE and cov.model = 'matern’. If factor
= TRUE, this should be of length n. factors.

a logical value indicating whether to simulate data following a factor modeling
approach that explicitly incoporates species correlations. If sp = TRUE, the latent
factors are simulated from independent spatial processes. If sp = FALSE, the
latent factors are simulated from standard normal distributions.

a single numeric value specifying the number of latent factors to use to simulate
the data if factor.model = TRUE.

currently no additional arguments

A list comprised of:

X
X.p

coords

psi

X.p.re

X.lambda.re

alpha.star

beta.star

a J X p.occ numeric design matrix for the occurrence portion of the model.

a three-dimensional numeric array with dimensions corresponding to sites, re-
peat visits, and number of detection regression coefficients. This is the design
matrix used for the detection portion of the occupancy model.

a J x 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

a N x J matrix of the spatial random effects for each species. Only used to
simulate data when sp = TRUE. If factor.model = TRUE, the first dimension is
n.factors.

a N x J matrix of the occurrence probabilities for each species at each site.
a N x J matrix of the latent occurrence states for each species at each site.

aN x J x max(n.rep) array of the detection probabilities for each species at each
site and replicate combination. Sites with fewer than max(n.rep) replicates will
contain NA values.

a Nx J xmax(n.rep) array of the raw detection-nondetection data for each
species at each site and replicate combination. Sites with fewer than max(n. rep)
replicates will contain NA values.

a three-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

a numeric matrix containing the levels of any occurrence random effect included
in the model. Only relevant when occurrence random effects are specified in
psi.RE.

a numeric matrix where each row contains the simulated detection random ef-
fects for each given level of the random effects included in the detection model.
Only relevant when detection random effects are included in the model.

a numeric matrix where each row contains the simulated occurrence random
effects for each given level of the random effects included in the occurrence
model. Only relevant when occurrence random effects are included in the model.

.model
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Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

X <= 8
.y <- 8
<-J.x*Jy
.rep <- sample(2:4, size = J, replace = TRUE)
<- 10
Community-level covariate effects
Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2)
tau.sq.alpha <- c(0.2, 0.3)
p.det <- length(alpha.mean)
psi.RE <- list(levels = c(10),
sigma.sqg.psi = c(1.5))
p.RE <- list(levels = c(15),
sigma.sq.p = 0.8)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
betal, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.betalil))
3
for (i in 1:p.det) {
alphal, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alphal[il))
3
# Spatial parameters if desired
phi <- runif(N, 3/1, 3/.1)
sigma.sq <- runif(N, 0.3, 3)
sp <- TRUE

HHZ D GGG

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta,
alpha = alpha, psi.RE = psi.RE, p.RE = p.RE, sp = TRUE,
cov.model = 'exponential', phi = phi, sigma.sq = sigma.sq)

simOcc Simulate Single-Species Detection-Nondetection Data

Description

The function simOcc simulates single-species occurrence data for simulation studies, power assess-
ments, or function testing. Data can be optionally simulated with a spatial Gaussian Process in
the occurrence portion of the model. Non-spatial random intercepts can also be included in the
detection or occurrence portions of the occupancy model.
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Usage

simOcc

simOcc(J.x, J.y, n.rep, n.rep.max, beta, alpha, psi.RE = list(),
p.RE = list(), sp = FALSE, svc.cols = 1, cov.model,
sigma.sq, phi, nu, x.positive = FALSE, ...)

Arguments

J.X

J.y

n.rep

n.rep.max

beta
alpha

psi.RE

p.RE

sp

svc.cols

a single numeric value indicating the number of sites to simulate detection-
nondetection data along the horizontal axis. Total number of sites with simulated
datais J.x x J.y.

a single numeric value indicating the number of sites to simulate detection-
nondetection data along the vertical axis. Total number of sites with simulated
datais J.x x J.y.

a numeric vector of length J = J.o x J.y indicating the number of repeat visits
at each of the J sites.

a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

a numeric vector containing the intercept and regression coefficient parameters
for the occupancy portion of the single-species occupancy model.

a numeric vector containing the intercept and regression coefficient parameters
for the detection portion of the single-species occupancy model.

a list used to specify the non-spatial random intercepts included in the occupancy
portion of the model. The list must have two tags: levels and sigma.sq.psi.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.psi is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the occupancy
portion of the model.

a list used to specify the non-spatial random intercepts included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.p is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the detection
portion of the model.

a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).
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cov.model

sigma.sq

phi

nu

X.positive

Value
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a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential”, "matern”, "spherical”, and
"gaussian".

a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE.

a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern”.

a logical value indicating whether the simulated covariates should be simulated
as random standard normal covariates (x.positive = FALSE) or restricted to
positive values using a uniform distribution with lower bound 0 and upper bound
1 (x.positive = TRUE).

currently no additional arguments

A list comprised of:

X
X.p

coords

psi

X.p.re

X.re

alpha.star

a J X p.occ numeric design matrix for the occupancy portion of the model.

a three-dimensional numeric array with dimensions corresponding to sites, re-
peat visits, and number of detection regression coefficients. This is the design
matrix used for the detection portion of the occupancy model.

a J x 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

a matrix of the spatial random effect values for each site. The number of columns
is determined by the svc. cols argument (the number of spatially-varying coef-
ficients).

a J x 1 matrix of the occupancy probabilities for each site.
a length J vector of the latent occupancy states at each site.

a J x max(n.rep) matrix of the detection probabilities for each site and repli-
cate combination. Sites with fewer than max(n.rep) replicates will contain NA
values.

a J x max(n.rep) matrix of the raw detection-nondetection data for each site
and replicate combination.

a three-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

a numeric matrix containing the levels of any occurrence random effect included
in the model. Only relevant when occurrence random effects are specified in
psi.RE.

a numeric vector that contains the simulated detection random effects for each
given level of the random effects included in the detection model. Only relevant
when detection random effects are included in the model.
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beta.star a numeric vector that contains the simulated occurrence random effects for each
given level of the random effects included in the occurrence model. Only rele-
vant when occurrence random effects are included in the model.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(400)

J.x <- 10

J.y <- 10

n.rep <- rep(4, J.x x J.y)

beta <- c(0.5, -0.15)

alpha <- c(0.7, 0.4)

phi <- 3/ .6

sigma.sq <- 2

psi.RE <- list(levels = 10,

sigma.sq.psi = 1.2)

p.RE <- list(levels = 15,
sigma.sq.p = 0.8)

dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, cov.model = 'spherical’,
sigma.sq = sigma.sq, phi = phi)

simTBinom Simulate Multi-Season Single-Species Binomial Data

Description

The function simTBinom simulates multi-season single-species binomial data for simulation studies,
power assessments, or function testing. Data can be optionally simulated with a spatial Gaussian
Process in the model. Non-spatial random intercepts can also be included in the model.

Usage

simTBinom(J.x, J.y, n.time, weights, beta, sp.only = 0,
trend = TRUE, psi.RE = list(), sp = FALSE,
cov.model, sigma.sq, phi, nu, svc.cols =1,

arl = FALSE, rho, sigma.sq.t, x.positive = FALSE, ...)
Arguments
J.x a single numeric value indicating the number of sites to simulate data along the
horizontal axis. Total number of sites with simulated data is J.x x J.y.
J.y a single numeric value indicating the number of sites to simulate data along the

vertical axis. Total number of sites with simulated data is J.x x J.y.
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n.time

weights

beta

sp.only

trend

psi.RE

sp

svc.cols

cov.model

sigma.sq

phi

nu

arl
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a single numeric value indicating the number of primary time periods (denoted
T) over which sampling occurs.

a numeric matrix with rows corresponding to sites and columns corresponding
to primary time periods that indicates the number of Bernoulli trials at each of
the site/time period combinations.

a numeric vector containing the intercept and regression coefficient parameters
for the model.

a numeric vector specifying which occurrence covariates should only vary over
space and not over time. The numbers in the vector correspond to the elements in
the vector of regression coefficients (beta). By default, all simulated occurrence
covariates are assumed to vary over both space and time.

a logical value. If TRUE, a temporal trend will be used to simulate the detection-
nondetection data and the second element of beta is assumed to be the trend
parameter. If FALSE no trend is used to simulate the data and all elements of beta
(except the first value which is the intercept) correspond to covariate effects.

a list used to specify the non-spatial random intercepts included in the model.
The list must have two tags: levels and sigma.sq.psi. levels is a vector of
length equal to the number of distinct random intercepts to include in the model
and contains the number of levels there are in each intercept. sigma.sq.psi is
a vector of length equal to the number of distinct random intercepts to include
in the model and contains the variances for each random effect. If not specified,
no random effects are included in the model.

a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential”, "matern”, "spherical”, and
"gaussian”.

a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE. If svc.cols has more than one value, there should be a distinct spatial
variance parameter for each spatially-varying coefficient.

a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE. If svc.cols has more than one value, there should be a distinct spatial
decay parameter for each spatially-varying coefficient.

anumeric value indicating the spatial smoothness parameter. Only used when sp
= TRUE and cov.model = "matern”. If svc. cols has more than one value, there
should be a distinct spatial smoothness parameter for each spatially-varying co-
efficient.

a logical value indicating whether to simulate a temporal random effect with an
AR(1) process. By default, set to FALSE.
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rho

sigma.sq.t

X.positive

Value

simTBinom

a numeric value indicating the AR(1) temporal correlation parameter. Ignored
when ar1 = FALSE.

a numeric value indicating the AR(1) temporal variance parameter. Ignored
when ar1 = FALSE.

a logical value indicating whether the simulated covariates should be simu-
lated as random standard normal covariates (x.positive = FALSE) or restricted
to positive values (x.positive = TRUE). If x.positive = TRUE, covariates are
simulated from a random normal and then the minimum value is added to each
covariate value to ensure non-negative covariate values.

currently no additional arguments

A list comprised of:

X

coords

X.re

beta.star

Author(s)

a J x T X p.occ numeric array containing the design matrix for the model.

a J x 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

a matrix of the spatial random effect values for each site. The number of columns
is determined by the svc. cols argument (the number of spatially-varying coef-
ficients).

a J x T matrix of the occupancy probabilities for each site during each primary
time period.

a J x T matrix of the binomial data at each site during each primary time period.
a three dimensional array containing the covariate effects (including an inter-

cept) whose effects are assumed to be spatially-varying. Dimensions correspond
to sites, primary time periods, and covariate.

a numeric matrix containing the levels of any unstructured random effect in-
cluded in the model. Only relevant when random effects are specified in psi.RE.

a numeric vector that contains the simulated random effects for each given level
of the random effects included in the model. Only relevant when random effects
are included in the model.

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

Examples

set.seed(1000)
# Sites

J.x <= 15

J.y <= 15
J<-J.x*Jy
# Years sampled

n.time <- sample(10, J, replace = TRUE)
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# Binomial weights
weights <- matrix(NA, J, max(n.time))
for (j in 1:J7) {
weights[j, 1:n.time[j]] <- sample(5, n.time[j], replace = TRUE)
3
# Occurrence --------———————-—————————-
beta <- c(-2, -0.5, -0.2, 0.75)
p.occ <- length(beta)
trend <- TRUE
sp.only <- @
psi.RE <- list()
# Spatial parameters ---------------—---
sp <- TRUE
svc.cols <- ¢c(1, 2, 3)
p.svc <- length(svc.cols)
cov.model <- "exponential”
sigma.sq <- runif(p.svc, 0.1, 1)
phi <- runif(p.svc, 3/1, 3/0.2)
# Temporal parameters -----------------
ar1 <- TRUE
rho <- 0.8
sigma.sq.t <- 1

dat <- simTBinom(J.x = J.x, J.y = J.y, n.time = n.time, weights = weights, beta = beta,
psi.RE = psi.RE, sp.only = sp.only, trend = trend,
sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
rho = rho, sigma.sq.t = sigma.sq.t, arl = TRUE, x.positive = FALSE)

simTOcc Simulate Multi-Season Single-Species Detection-Nondetection Data

Description

The function simTOcc simulates multi-season single-species occurrence data for simulation studies,
power assessments, or function testing. Data can be optionally simulated with a spatial Gaussian
Process in the occurrence portion of the model. Non-spatial random intercepts can also be included
in the detection or occurrence portions of the occupancy model.

Usage

simTOcc(J.x, J.y, n.time, n.rep, n.rep.max, beta, alpha, sp.only = @, trend = TRUE,
psi.RE = list(), p.RE = list(), sp = FALSE, svc.cols = 1, cov.model,
sigma.sq, phi, nu, arl = FALSE, rho, sigma.sq.t, x.positive = FALSE,...)

Arguments

J.x a single numeric value indicating the number of sites to simulate detection-
nondetection data along the horizontal axis. Total number of sites with simulated
datais J.x x J.y.
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J.y a single numeric value indicating the number of sites to simulate detection-
nondetection data along the vertical axis. Total number of sites with simulated
datais J.x x J.y.

n.time a single numeric value indicating the number of primary time periods (denoted
T) over which sampling occurs.

n.rep a numeric matrix indicating the number of replicates at each site during each
primary time period. The matrix must have J = J.o X J.y rows and T columns,
where T is the number of primary time periods (e.g., years or seasons) over
which sampling occurs.

n.rep.max a single numeric value indicating the maximum number of replicate surveys.
This is an optional argument, with its default value set to max(n.rep). This can
be used to generate data sets with different types of missingness (e.g., simulate
data across 20 days (replicate surveys) but sites are only sampled a maximum of
ten times each).

beta a numeric vector containing the intercept and regression coefficient parameters
for the occupancy portion of the single-species occupancy model. Note that
if trend = TRUE, the second value in the vector corresponds to the estimated
occurrence trend.

alpha a numeric vector containing the intercept and regression coefficient parameters
for the detection portion of the single-species occupancy model.

sp.only a numeric vector specifying which occurrence covariates should only vary over
space and not over time. The numbers in the vector correspond to the elements in
the vector of regression coefficients (beta). By default, all simulated occurrence
covariates are assumed to vary over both space and time.

trend a logical value. If TRUE, a temporal trend will be used to simulate the detection-
nondetection data and the second element of beta is assumed to be the trend
parameter. If FALSE no trend is used to simulate the data and all elements of beta
(except the first value which is the intercept) correspond to covariate effects.

psi.RE a list used to specify the unstructured random intercepts included in the occu-
pancy portion of the model. The list must have two tags: levels and sigma.sq.psi.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each in-
tercept. sigma.sq.psi is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. An additional tag site.RE can be set to TRUE to simulate data
with a site-specific non-spatial random effect on occurrence. If not specified, no
random effects are included in the occupancy portion of the model.

p.RE alist used to specify the unstructured random intercepts included in the detection
portion of the model. The list must have two tags: levels and sigma.sq.p.
levels is a vector of length equal to the number of distinct random intercepts
to include in the model and contains the number of levels there are in each
intercept. sigma.sq.p is a vector of length equal to the number of distinct
random intercepts to include in the model and contains the variances for each
random effect. If not specified, no random effects are included in the detection
portion of the model.
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a logical value indicating whether to simulate a spatially-explicit occupancy
model with a Gaussian process. By default set to FALSE.

a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols is an integer vector with values indicating the
order of covariates specified in the model formula (with 1 being the intercept if
specified).

a quoted keyword that specifies the covariance function used to model the spa-
tial dependence structure among the latent occurrence values. Supported co-
variance model key words are: "exponential”, "matern”, "spherical”, and
"gaussian”.

a numeric value indicating the spatial variance parameter. Ignored when sp =
FALSE.

a numeric value indicating the spatial decay parameter. Ignored when sp =
FALSE.

a numeric value indicating the spatial smoothness parameter. Only used when
sp = TRUE and cov.model = "matern”.

a logical value indicating whether to simulate a temporal random effect with an
AR(1) process. By default, set to FALSE.

a numeric value indicating the AR(1) temporal correlation parameter. Ignored
when ar1 = FALSE.

a numeric value indicating the AR(1) temporal variance parameter. Ignored
when ar1 = FALSE.

a logical value indicating whether the simulated covariates should be simu-
lated as random standard normal covariates (x.positive = FALSE) or restricted
to positive values (x.positive = TRUE). If x.positive = TRUE, covariates are
simulated from a random normal and then the minimum value is added to each
covariate value to ensure non-negative covariate values.

currently no additional arguments

A list comprised of:

X

X.p

coords

psi

a J x T X p.occ numeric array containing the design matrix for the occurrence
portion of the occupancy model.

a four-dimensional numeric array with dimensions corresponding to sites, pri-
mary time periods, repeat visits, and number of detection regression coefficients.
This is the design matrix used for the detection portion of the occupancy model.

a J x 2 numeric matrix of coordinates of each occupancy site. Required for
spatial models.

a J x 1 matrix of the spatial random effects. Only used to simulate data when
sp = TRUE.

a J x T matrix of the occupancy probabilities for each site during each primary
time period.



136

X.p.re

X.re

alpha.star

beta.star

eta

Author(s)

simTOcc

a J x T matrix of the latent occupancy states at each site during each primary
time period.

a J x T xmax(n.rep) array of the detection probabilities for each site, primary
time period, and replicate combination. Site/time periods with fewer than max(n.
replicates will contain NA values.

a J x T xmax(n.rep) array of the raw detection-nondetection data for each sit,
primary time period, and replicate combination.

a four-dimensional numeric array containing the levels of any detection random
effect included in the model. Only relevant when detection random effects are
specified in p.RE.

a numeric matrix containing the levels of any occurrence random effect included
in the model. Only relevant when occurrence random effects are specified in
psi.RE.

a numeric vector that contains the simulated detection random effects for each
given level of the random effects included in the detection model. Only relevant
when detection random effects are included in the model.

a numeric vector that contains the simulated occurrence random effects for each
given level of the random effects included in the occurrence model. Only rele-
vant when occurrence random effects are included in the model.

a T x 1 matrix of the latent AR(1) random effects. Only included when ar1 =
TRUE.

Jeffrey W. Doser <doserjef@msu.edu>,

Examples

X <- 10
.y <- 10

J
J
J<-J.x=*J.y

# Number of time periods sampled

n.time <- sample(1@, J, replace = TRUE)
n.time.max <- max(n.time)

# Replicates

n.rep <- matrix(NA, J, max(n.time))

for (j in 1:J7) {

n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)

3

# Occurrence ----——————————————————————

# Fixed

beta <- c(0.4, 0.5, -0.9)

trend <- TRUE

sp.only <- @

psi.RE <- list(levels = c(10),
sigma.sqg.psi = c(1))

# Detection -------—---——-—--———--————-

rep)
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alpha <- c(-1, 0.7, -0.5)
p.RE <- list(levels = c(10),
sigma.sq.p = c(0.5))
# Spatial parameters ------------—------
sp <- TRUE
cov.model <- "exponential”
sigma.sq <- 2
phi <- 3/ .4
nu <- 1
# Temporal parameters -----------------
ar1l <- TRUE
rho <- 0.5
sigma.sq.t <- 0.8
# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,
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beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,

psi.RE = psi.RE, p.RE = p.RE,

sp = sp, cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
arl = arl1, rho = rho, sigma.sq.t = sigma.sq.t)
str(dat)
spIntPGOcc Function for Fitting Single-Species Integrated Spatial Occupancy
Models Using Polya-Gamma Latent Variables
Description

The function spIntPGOcc fits single-species integrated spatial occupancy models using Polya-
Gamma latent variables. Models can be fit using either a full Gaussian process or a Nearest Neigh-
bor Gaussian Process for large data sets. Data integration is done using a joint likelihood framework,
assuming distinct detection models for each data source that are each conditional on a single latent

occupancy process.

Usage

spIntPGOcc(occ.formula, det.formula, data, inits, priors,
tuning, cov.model = "exponential”, NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed, k.fold.data, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See

example below.
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det.formula a list of symbolic descriptions of the models to be fit for the detection portion
of the model using R’s model syntax for each data set. Each element in the list
is a formula for the detection model of a given data set. Only right-hand side of
formula is specified. See example below.

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, sites and coords. y is a list of matrices or data frames for each data
set used in the integrated model. Each element of the list has first dimension
equal to the number of sites with that data source and second dimension equal
to the maximum number of replicates at a given site. occ.covs is a matrix
or data frame containing the variables used in the occurrence portion of the
model, with the number of rows being the number of sites with at least one
data source for each column (variable). det.covs is a list of variables included
in the detection portion of the model for each data source. det.covs should
have the same number of elements as y, where each element is itself a list. Each
element of the list for a given data source is a different detection covariate, which
can be site-level or observational-level. Site-level covariates are specified as a
vector with length equal to the number of observed sites of that data source,
while observation-level covariates are specified as a matrix or data frame with
the number of rows equal to the number of observed sites of that data source and
number of columns equal to the maximum number of replicates at a given site.
coords is a matrix of the observation site coordinates. Note that spOccupancy
assumes coordinates are specified in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, and nu. The value portion of all tags except alpha
is the parameter’s initial value. The tag alpha is a list comprised of the initial
values for the detection parameters for each data source. Each element of the list
should be a vector of initial values for all detection parameters in the given data
source or a single value for each data source to assign all parameters for a given
data source the same initial value. See priors description for definition of each
parameter name. Additionally, the tag fix can be set to TRUE to fix the starting
values across all chains. If fix is not specified (the default), starting values are
varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, phi.unif, sigma.sq.ig, sigma.sqg.unif, and nu.unif. Oc-
currence (beta) and detection (alpha) regression coefficients are assumed to
follow a normal distribution. For beta hyperparameters of the normal distribu-
tion are passed as a list of length two with the first and second elements corre-
sponding to the mean and variance of the normal distribution, which are each
specified as vectors of length equal to the number of coefficients to be estimated
or of length one if priors are the same for all coefficients. For the detection co-
efficients alpha, the mean and variance hyperparameters are themselves passed
in as lists, with each element of the list corresponding to the specific hyperpa-
rameters for the detection parameters in a given data source. If not specified,
prior means are set to O and prior variances set to 2.73 for normal priors. The
spatial variance parameter, sigma. sq, is assumed to follow an inverse-Gamma
distribution or a uniform distribution (default is inverse-Gamma). sigma. sq can
also be fixed at its initial value by setting the prior value to "fixed". The spatial
decay phi and smoothness nu parameters are assumed to follow Uniform dis-
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tributions. The hyperparameters of the inverse-Gamma are passed as a vector
of length two, with the first and second elements corresponding to the shape
and scale, respectively. The hyperparameters of the Uniform are also passed as
a vector of length two with the first and second elements corresponding to the
lower and upper support, respectively.

a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the Adaptive
sampler. See Roberts and Rosenthal (2009) for details.

a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

non

words are: "exponential”, "matern”, "spherical”, and "gaussian”.

if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information.

number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb” and "brute” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

the number of MCMC batches to run for each chain for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.

the number of samples out of the total n.batch x batch.length samples to
discard as burn-in. By default, the first 10% of samples is discarded.
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n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k. fold. threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

k.fold.seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.data an integer specifying the specific data set to hold out values from. If not spec-
ified, data from all data set locations will be incorporated into the k-fold cross-
validation.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

Value
An object of class spIntPGOcc that is a list comprised of:

beta.samples  a coda object of posterior samples for the occurrence regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients for
all data sources.

z.samples a coda object of posterior samples for the latent occurrence values
psi.samples a coda object of posterior samples for the latent occurrence probability values
theta.samples a coda object of posterior samples for covariance parameters.

w.samples a coda object of posterior samples for latent spatial random effects.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.

run.time execution time reported using proc.time().

k.fold.deviance
scoring rule (deviance) from k-fold cross-validation. A separate deviance value
is returned for each data source. Only included if k. fold is specified in function
call. Only a single value is returned if k. fold.data is specified.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().
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Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(400)

Simulate Data -------------------——-——- -
Number of locations in each direction. This is the total region of interest
where some sites may or may not have a data source.

X <- 8

.y <= 8

.all <- J.x x J.y
Number of data sources.
.data <- 4
Sites for each data source.
.obs <- sample(ceiling(@0.2 * J.all):ceiling(@.5 x J.all), n.data, replace = TRUE)
Replicates for each data source.
.rep <- list()
for (i in 1:n.data) {
n.rep[[i]] <- sample(1:4, size = J.obs[i], replace = TRUE)
3
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# Occupancy covariates

beta <- c(0.5, 0.5)

p.occ <- length(beta)

# Detection covariates

alpha <- list()

alphal[[1]] <- runif(2, 0, 1)
alphal[2]] <- runif(3, @, 1)
alphal[[3]] <- runif(2, -1, 1)
alphal[[4]] <- runif(4, -1, 1)
p.det.long <- sapply(alpha, length)
p.det <- sum(p.det.long)
sigma.sq <- 2

phi <- 3/ .5

sp <- TRUE

# Simulate occupancy data from multiple data sources.
dat <- simIntOcc(n.data = n.data, J.x = J.x, J.y = J.y, J.obs = J.obs,

n.rep = n.rep, beta = beta, alpha =

sigma.sq = sigma.sq, phi = phi, cov.model = 'exponential')

y <- dat$y

X <- dat$X.obs

X.p <- dat$X.p

sites <- dat$sites

X.0 <- dat$X.pred

psi.@ <- dat$psi.pred

coords <- as.matrix(dat$coords.obs)
coords.@ <- as.matrix(dat$coords.pred)

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list()

# Add covariates one by one

det.covs[[1]] <- list(det.cov.1.1 = X.p[[111L[, , 21)
det.covs[[2]] <- list(det.cov.2.1 = X.p[[2]11[, , 21,
det.cov.2.2 = X.p[[211C, , 3D
det.covs[[3]] <- list(det.cov.3.1 = X.p[[311[, , 21)
det.covs[[4]] <- list(det.cov.4.1 = X.p[[4]11[, , 21,
det.cov.4.2 = X.p[[4]11[, , 31,
det.cov.4.3 = X.p[[4]11[, , 41)

data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
sites = sites,
coords = coords)

J <- length(dat$z.obs)

# Initial values

inits.list <- list(alpha = list(o, 0, 0, @),
beta = 0,
phi = 3/ .5,

alpha, sp = sp,

spIntPGOcc
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sigma.sq = 2,

w = rep(0, J),

z = rep(1, 1))
# Priors

prior.list <- list(beta.normal = list(mean = @, var
alpha.normal = list(mean = list(@, 0, @, 0),

var

phi.unif = c¢(3/1, 3/.1),
sigma.sq.ig = c(2, 2))

# Tuning
tuning.list <- list(phi = 0.3)

# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25

out <- spIntPGOcc(occ.formula = ~ occ.cov,

det.formula = list(f.1
f.2
f.3
f.4
data = data.list,
inits = inits.list,
n.batch = n.batch,
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2.72),

list(2.72, 2.72, 2.72, 2.72)),

det.
det.
det.
det.

batch.length = batch.length,

accept.rate = 0.43,
priors = prior.list,

cov.model = "exponential”,

tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,

NNGP = FALSE,
n.report = 10,

n.burn = 50,

n.thin = 1)

summary (out)

Ccov.
Cov.
Cov.
Ccov.

+ det.cov.2.2,

+ det.cov.4.2 + det.cov.4.3),

spMsPGOcc Function for Fitting Multi-Species Spatial Occupancy Models Using
Polya-Gamma Latent Variables

Description

The function spMsPGOcc fits multi-species spatial occupancy models using Polya-Gamma latent
variables. Models can be fit using either a full Gaussian process or a Nearest Neighbor Gaussian

Process for large data sets.
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Usage

spMsPGOcc(occ. formula, det.formula, data, inits, priors, tuning,
cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, n.report = 100,
n.burn = round(.1@ * n.batch * batch.length), n.thin = 1,
n.chains = 1, k.fold, k.fold.threads = 1, k.fold.seed,
k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using Ime4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, coords. y is a three-dimensional array with first dimension equal to
the number of species, second dimension equal to the number of sites, and third
dimension equal to the maximum number of replicates at a given site. occ.covs
is a matrix or data frame containing the variables used in the occurrence portion
of the model, with J rows for each column (variable). det.covs is a list of
variables included in the detection portion of the model. Each list element is
a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site. coords is a J x 2 matrix of the observation coordinates. Note
that spOccupancy assumes coordinates are specified in a projected coordinate
system.

inits a list with each tag corresponding to a parameter name. Valid tags are alpha.comm,

beta.comm, beta, alpha, tau.sq.beta, tau.sq.alpha, sigma.sq.psi, sigma.sq.p,
z, sigma.sq, phi, w, and nu. nu is only specified if cov.model = "matern”,
sigma.sq.psi is only specified if there are random intercepts in occ. formula,

and sigma. sq.pis only specified if there are random intercpets in det . formula.

The value portion of each tag is the parameter’s initial value. See priors de-
scription for definition of each parameter name. Additionally, the tag fix can

be set to TRUE to fix the starting values across all chains. If fix is not specified

(the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.comm.normal,
alpha.comm.normal, tau.sq.beta.ig, tau.sq.alpha.ig,phi.unif, sigma.sq.ig,
sigma.sq.unif, nu.unif, sigma.sq.psi, sigma.sq.p. Community-level oc-
currence (beta.comm) and detection (alpha.comm) regression coefficients are
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assumed to follow a normal distribution. The hyperparameters of the normal
distribution are passed as a list of length two with the first and second elements
corresponding to the mean and variance of the normal distribution, which are
each specified as vectors of length equal to the number of coefficients to be esti-
mated or of length one if priors are the same for all coefficients. If not specified,
prior means are set to 0 and prior variances set to 2.73. Community-level vari-
ance parameters for occupancy (tau.sq.beta) and detection (tau.sq.alpha)
are assumed to follow an inverse Gamma distribution. The hyperparameters of
the inverse gamma distribution are passed as a list of length two with the first
and second elements corresponding to the shape and scale parameters, which are
each specified as vectors of length equal to the number of coefficients to be esti-
mated or a single value if priors are the same for all parameters. If not specified,
prior shape and scale parameters are set to 0.1. The species-specific spatial vari-
ance parameter, sigma. sq, is assumed to follow an inverse-Gamma distribution
or a uniform distribution (default is inverse-Gamma). sigma.sq of all species
can also be fixed at its initial value by setting the prior value to "fixed". The
spatial decay phi and smoothness nu parameters are assumed to follow Uni-
form distributions. The hyperparameters of the inverse-Gamma are passed as a
list of length two, with the list elements being vectors of length N correspond-
ing to the species-specific shape and scale parameters, respectively, or a single
value if the same value is assigned for all species. The hyperparameters of the
Uniform are also passed as a list with two elements, with both elements being
vectors of length N corresponding to the lower and upper support, respectively,
or as a single value if the same value is assigned for all species. sigma.sq.psi
and sigma.sq.p are the random effect variances for any occurrence or detec-
tion random effects, respectively, and are assumed to follow an inverse Gamma
distribution. The hyperparameters of the inverse-Gamma distribution are passed
as a list of length two with first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances.

a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the adaptive
sampler. We assume the initial variance of the adaptive sampler is the same
for each species, although the adaptive sampler will adjust the tuning variances
separately for each species. See Roberts and Rosenthal (2009) for details.

a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

n o n

words are: "exponential”, "matern”, "spherical”, and "gaussian”.

if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information.

number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.
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a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb” and "brute"” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.
the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

the length of each MCMC batch to run for the Adaptive MCMC sampler. See
Roberts and Rosenthal (2009) for details.

target acceptance rate for Adaptive MCMC. Defaul is 0.43. See Roberts and
Rosenthal (2009) for details.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp. threads > 1 might not work on some sys-
tems.

if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

the interval to report Metropolis sampler acceptance and MCMC progress. Note
this is specified in terms of batches and not overall samples for spatial models.
the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

the number of chains to run in sequence.

specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed

are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

number of threads to use for cross-validation. If k. fold. threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments
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Value

An object of class spMsPGOcc that is a list comprised of:

beta.comm.samples
a coda object of posterior samples for the community level occurrence regres-
sion coefficients.

alpha.comm.samples
a coda object of posterior samples for the community level detection regression
coefficients.

tau.sq.beta.samples
a coda object of posterior samples for the occurrence community variance pa-
rameters.

tau.sq.alpha.samples
a coda object of posterior samples for the detection community variance param-
eters.

beta.samples a coda object of posterior samples for the species level occurrence regression
coefficients.

alpha.samples a coda object of posterior samples for the species level detection regression
coefficients.

theta.samples a coda object of posterior samples for the species level covariance parameters.

z.samples a three-dimensional array of posterior samples for the latent occurrence values
for each species.

psi.samples a three-dimensional array of posterior samples for the latent occupancy proba-
bility values for each species.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for each species.

sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occurrence portion of the model. Only included if random intercepts are
specified in occ. formula.

sigma.sq.p.samples
a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.

alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det. formula.

beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.

like.samples  a three-dimensional array of posterior samples for the likelihood value associ-
ated with each site and species. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.

ESS a list of effective sample sizes for some of the model parameters.
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run.time MCMC sampler execution time reported using proc.time().
k.fold.deviance
vector of scoring rules (deviance) from k-fold cross-validation. A separate value
is reported for each species. Only included if k. fold is specified in function
call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted().

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples
set.seed(400)
# Simulate Data -------—----------——------ oo

J.x <=7
Jy <=7
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J<-J.x*Jy
n.rep <- sample(2:4, size = J, replace = TRUE)
N <-5
# Community-level covariate effects
# Occurrence
beta.mean <- ¢(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- ¢(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, il <- rnorm(N, beta.mean[i], sqrt(tau.sq.betal[i]))
3
for (i in 1:p.det) {
alphal, il <- rnorm(N, alpha.mean[i], sqrt(tau.sqg.alphalil))
3
phi <- runif(N, 3/1, 3/.4)
sigma.sq <- runif(N, 0.3, 3)
sp <- TRUE

dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential')

# Number of batches

n.batch <- 30

# Batch length

batch.length <- 25

n.samples <- n.batch * batch.length

y <- dat$y

X <- dat$X

X.p <- dat$X.p

coords <- as.matrix(dat$coords)

# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21,
det.cov.2 = X.p[, , 31)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = @, var = 2.72),
alpha.comm.normal = list(mean = @, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1),
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# Initial values

spPGOcc

phi.unif = list(a = 3/1, b = 3/.1),
sigma.sq.ig = list(a = 2, b = 2))

inits.list <- list(alpha.comm = 0,

# Tuning

beta.comm = 0,

beta = 0,

alpha = 0,

tau.sq.beta = 1,

tau.sq.alpha = 1,

phi =3 / .5,

sigma.sq = 2,

w = matrix(@, nrow = N, ncol = nrow(X)),
z = apply(y, c(1, 2), max, na.rm = TRUE))

tuning.list <- list(phi = 1)

out <- spMsPGOcc(occ.formula = ~ occ.cov,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,

inits = inits.list,

n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,

priors = prior.list,
cov.model = "exponential”,
tuning = tuning.list,
n.omp.threads = 1,

verbose = TRUE,

NNGP = TRUE,

n.neighbors = 5,

search.type = 'cb',

n.report = 10,

n.burn = 500,

n.thin =1,

n.chains = 1)

summary (out, level = 'both')

spPGOcc

Function for Fitting Single-Species Spatial Occupancy Models Using
Polya-Gamma Latent Variables

Description

The function spPGOcc fits single-species spatial occupancy models using Polya-Gamma latent vari-
ables. Models can be fit using either a full Gaussian process or a Nearest Neighbor Gaussian Process

for large data sets.
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Usage

spPGOcc(occ. formula, det.formula, data, inits, priors,
tuning, cov.model = "exponential”, NNGP = TRUE,
n.neighbors = 15, search.type = "cb”, n.batch,
batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using Ime4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, and coords. Yy is the detection-nondetection data matrix or data
frame with first dimension equal to the number of sites (J) and second dimen-
sion equal to the maximum number of replicates at a given site. occ.covs is
a matrix or data frame containing the variables used in the occupancy portion
of the model, with J rows for each column (variable). det.covs is a list of
variables included in the detection portion of the model. Each list element is
a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site. coords is a J x 2 matrix of the observation coordinates. Note
that spOccupancy assumes coordinates are specified in a projected coordinate
system.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.p. nuis only specified
if cov.model = "matern”, sigma. sq.p is only specified if there are random ef-
fects in det. formula, and sigma.sq.psi is only specified if there are random
effects in occ. formula. The value portion of each tag is the parameter’s initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, phi.unif, sigma.sq.ig, sigma.sq.unif, nu.unif, sigma.sq.psi.ig,
and sigma.sq.p.ig. Occurrence (beta) and detection (alpha) regression co-
efficients are assumed to follow a normal distribution. The hyperparameters of
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the normal distribution are passed as a list of length two with the first and sec-
ond elements corresponding to the mean and variance of the normal distribution,
which are each specified as vectors of length equal to the number of coefficients
to be estimated or of length one if priors are the same for all coefficients. If not
specified, prior means are set to 0 and prior variances set to 2.73. The spatial
variance parameter, sigma.sq, is assumed to follow an inverse-Gamma distri-
bution or a uniform distribution (default is inverse-Gamma). sigma. sq can also
be fixed at its initial value by setting the prior value to "fixed"”. The spatial
decay phi and smoothness nu parameters are assumed to follow Uniform distri-
butions. The hyperparameters of the inverse-Gamma for sigma.sq are passed
as a vector of length two, with the first and second elements corresponding to
the shape and scale, respectively. The hyperparameters of the Uniform are also
passed as a vector of length two with the first and second elements corresponding
to the lower and upper support, respectively. sigma.sq.psi and sigma.sq.p
are the random effect variances for any occurrence or detection random effects,
respectively, and are assumed to follow an inverse-Gamma distribution. The hy-
perparameters of the inverse-Gamma distribution are passed as a list of length
two with the first and second elements corresponding to the shape and scale
parameters, respectively, which are each specified as vectors of length equal to
the number of random intercepts or of length one if priors are the same for all
random effect variances.

a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

n o n

words are: "exponential”, "matern”, "spherical”, and "gaussian”.

a list with each tag corresponding to a parameter name. Valid tags are phi and
nu. The value portion of each tag defines the initial variance of the Adaptive
sampler. See Roberts and Rosenthal (2009) for details.

if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information.

number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb” and "brute"” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.
the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.
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accept.rate

n.omp.threads

verbose

n.report

n.burn

n.thin

n.chains

k.fold

k.fold.threads

k.fold.seed

k.fold.only

Value
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target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp. threads > 1 might not work on some sys-
tems.

if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

the interval to report Metropolis sampler acceptance and MCMC progress.

the number of samples out of the total n.batch x batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

the number of MCMC chains to run in sequence.

specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed

are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

An object of class spPGOcc that is a list comprised of:

beta.samples
alpha.samples
z.samples
psi.samples

theta.samples

a coda object of posterior samples for the occurrence regression coefficients.
a coda object of posterior samples for the detection regression coefficients.

a coda object of posterior samples for the latent occurrence values

a coda object of posterior samples for the latent occurrence probability values

a coda object of posterior samples for covariance parameters.
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w.samples a coda object of posterior samples for latent spatial random effects.
sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ. formula.
sigma.sq.p.samples
a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.
beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.
alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det. formula.

like.samples  a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc. time().

k.fold.deviance
soring rule (deviance) from k-fold cross-validation. Only included if k. fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability values are not included in the model object, but can be
extracted using fitted().

Author(s)
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Examples

set.seed(350)

# Simulate Data ——————=————=—————————m—

J.x <=8

J.y <=8

J<-J.x*J.y

n.rep <- sample(2:4, J, replace = TRUE)

beta <- c(0.5, -0.15)

p.occ <- length(beta)

alpha <- c(0.7, 0.4, -0.2)

p.det <- length(alpha)

phi <- 3/ .6

sigma.sq <- 2

dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential')

y <- dat$y

X <- dat$X

X.p <- dat$X.p

coords <- as.matrix(dat$coords)

# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21,
det.cov.2 = X.p[, , 31)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.iter <- n.batch * batch.length

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
sigma.sq.ig = c(2, 2),
phi.unif = c(3/1, 3/.1))

# Initial values

inits.list <- list(alpha = 0, beta = 0,
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# Tuning
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phi =3 / .5,

sigma.sq = 2,

w = rep(@, nrow(X)),

z = apply(y, 1, max, na.rm = TRUE))

tuning.list <- list(phi = 1)

out <- spPGOcc(occ.formula = ~ occ.cov,

det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,

inits = inits.list,

n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential”,
tuning = tuning.list,

NNGP = FALSE,

n.neighbors = 5,

search.type = 'cb',

n.report = 10,

n.burn = 50,

n.chains = 1)

summary (out)
stPGOcc Function for Fitting Multi-Season Single-Species Spatial Occupancy
Models Using Polya-Gamma Latent Variables
Description

Function for fitting multi-season single-species spatial occupancy models using Polya-Gamma la-
tent variables.

Usage

stPGOcc(occ. formula, det.formula, data, inits, priors,

Arguments

tuning, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,
batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,

n.burn = round(.10 * n.batch * batch.length),

n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

occ.formula a symbolic description of the model to be fit for the occurrence portion of the

model using R’s model syntax. Only right-hand side of formula is specified. See
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example below. Random intercepts are allowed using Ime4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, and coords. y is a three-dimensional array with first dimension equal
to the number of sites (J), second dimension equal to the maximum number of
primary time periods (i.e., years or seasons), and third dimension equal to the
maximum number of replicates at a given site. occ.covs is a list of variables
included in the occurrence portion of the model. Each list element is a different
occurrence covariate, which can be site level or site/primary timer period level.
Site-level covariates are specified as a vector of length J while site/primary time
period level covariates are specified as a matrix with rows corresponding to sites
and columns correspond to primary time periods. Similarly, det.covs is a list
of variables included in the detection portion of the model, with each list ele-
ment corresponding to an individual variable. In addition to site-level and/or
site/primary time period-level, detection covariates can also be observational-
level. Observation-level covariates are specified as a three-dimensional array
with first dimension corresponding to sites, second dimension corresponding to
primary time period, and third dimension corresponding to replicate. coords is
a J x 2 matrix of the observation coordinates. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.p, sigma.sq.t, rho.
The value portion of each tag is the parameter’s initial value. sigma.sq.psi and
sigma.sq.p are only relevant when including random effects in the occurrence
and detection portion of the occupancy model, respectively. nu is only specified
if cov.model = "matern”. sigma.sq.t and rho are only relevant when ar1 =
TRUE. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, sigma.sq.psi.ig, sigma.sq.p.ig, phi.unif, sigma.sq.1ig,
nu.unif, sigma.sq.t.ig, and rho.unif. Occupancy (beta) and detection
(alpha) regression coefficients are assumed to follow a normal distribution. The
hyperparameters of the normal distribution are passed as a list of length two with
the first and second elements corresponding to the mean and variance of the
normal distribution, which are each specified as vectors of length equal to the
number of coefficients to be estimated or of length one if priors are the same for
all coefficients. If not specified, prior means are set to 0 and prior variances set
to 2.72. sigma.sq.psi and sigma. sq.p are the random effect variances for any
occurrence or detection random effects, respectively, and are assumed to follow
an inverse Gamma distribution. The hyperparameters of the inverse-Gamma
distribution are passed as a list of length two with first and second elements
corresponding to the shape and scale parameters, respectively, which are each



158

cov.model

tuning

NNGP

n.neighbors

search. type

n.batch

batch.length

accept.rate

stPGOcc

specified as vectors of length equal to the number of random intercepts or of
length one if priors are the same for all random effect variances. The spatial
variance parameter, sigma.sq, is assumed to follow an inverse-Gamma distri-
bution. The spatial decay phi and smoothness nu parameters are assumed to
follow Uniform distributions. The hyperparameters of the inverse-Gamma for
sigma.sq.ig are passed as a vector of length two, with the first and second
elements corresponding to the shape and scale parameters, respectively. The hy-
perparameters of the uniform are also passed as a vector of length two with the
first and second elements corresponding to the lower and upper support, respec-
tively. sigma.sq.t and rho are the AR(1) variance and correlation parameters
for the AR(1) zero-mean temporal random effects, respectively. sigma.sq.t is
assumed to follow an inverse-Gamma distribution, where the hyperparameters
are specified as a vector with elements corresponding to the shape and scale pa-
rameters, respectively. rho is assumed to follow a uniform distribution, where
the hyperparameters are specified in a vector of length two with elements corre-
sponding to the lower and upper bounds of the uniform prior.

a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

non

words are: "exponential”, "matern”, "spherical”, and "gaussian”.

a list with each tag corresponding to a parameter name. Valid tags are phi,
nu, and rho. The value portion of each tag defines the initial variance of the
Adaptive sampler. See Roberts and Rosenthal (2009) for details.

if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. Currently
only NNGP = TRUE is supported for multi-season single-species trend occupancy
models.

number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb” and "brute” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.
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n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

ari logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scoring
rule, we use the model deviance as described in Hooten and Hobbs (2015). For
cross-validation in multi-season models, the data are split along the site dimen-
sion, such that each hold-out data set consists of a J / k. fold sites sampled
over all primary time periods during which data are available at each given site.
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

k.fold.seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments
Value
An object of class stPGOcc that is a list comprised of:

beta.samples  a coda object of posterior samples for the occupancy regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.
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z.samples a three-dimensional array of posterior samples for the latent occupancy values,
with dimensions corresponding to posterior sample, site, and primary time pe-
riod.

psi.samples a three-dimensional array of posterior samples for the latent occupancy probabil-

ity values, with dimensions corresponding to posterior sample, site, and primary
time period.

theta.samples a coda object of posterior samples for spatial covariance parameters and tempo-
ral covariance parameters if ar1 = TRUE.

w.samples a coda object of posterior samples for latent spatial random effects.
sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ. formula.
sigma.sq.p.samples
a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.
beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.
alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det. formula.

eta.samples a coda object of posterior samples for the AR(1) random effects for each primary
time period. Only included if ar1 = TRUE

like.samples a three-dimensional array of posterior samples for the likelihood values associ-
ated with each site and primary time period. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc. time().

k.fold.deviance
scoring rule (deviance) from k-fold cross-validation. Only included if k. fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted(). Note that if k.fold.only = TRUE, the return list object will
only contain run. time and k. fold.deviance.

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.
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Examples

set.seed(500)
Sites
X <- 10
.y <- 10
<-J.x*xJ.y
Primary time periods
.time <- sample(1@, J, replace = TRUE)
.time.max <- max(n.time)
Replicates
.rep <- matrix(NA, J, max(n.time))
for (j in 1:J7) {
n.replj, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
3
# Occurrence ------=--—=---=-------------
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- 0@
psi.RE <- list()
# Detection --—----—----—-—--—-—m—mo—o
alpha <- c(-1, 0.7, -0.5)
p.RE <- list()
# Spatial ---------—--——— -
sp <- TRUE
cov.model <- "exponential”
sigma.sq <- 2
phi <- 3/ .4
# Temporal --—------——————————————
rho <- 0.5

S5 # 5 S # G Gy o
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sigma.sq.t <- 1

# Get all the data

dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = TRUE, sigma.sq = sigma.sq,
phi = phi, cov.model = cov.model, ar1l = TRUE,
sigma.sqg.t = sigma.sq.t, rho = rho)

# Package all data into a list
# Occurrence
occ.covs <- list(int = dat$x[, , 11,
trend = dat$x[, , 2],
occ.cov.1 = dat$x[, , 31)
# Detection
det.covs <- list(det.cov.1 = dat$X.p[, , , 21,
det.cov.2 = dat$X.pl[, , , 31)
# Data list bundle
data.list <- list(y = dat$y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = dat$coords)
# Priors
prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
sigma.sq.ig = c(2, 2),
phi.unif = c(3 /1, 3/ 0.1),
rho.unif = c(-1, 1),
sigma.sq.t.ig = c(2, 1))

# Initial values

z.init <- apply(dat$y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > @))

inits.list <- list(beta = @, alpha = @, z = z.init, phi = 3 / .5, sigma.sq = 2,
w = rep(@, J), rho = 0, sigma.sq.t = 0.5)

# Tuning

tuning.list <- list(phi = 1, rho = 1)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.iter <- n.batch * batch.length

# Run the model

out <- stPGOcc(occ.formula = ~ trend + occ.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
priors = prior.list,
cov.model = "exponential”,
tuning = tuning.list,
NNGP = TRUE,
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ar1 = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.chains = 1)

summary (out)

summary.intPGOcc Methods for intPGOcc Object

Description

Methods for extracting information from fitted single species integrated occupancy (intPGOcc)
model.

Usage

## S3 method for class 'intPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'intPGOcc'
print(x, ...)
Arguments
object, x object of class intPGOcc.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class intPGOcc, including methods
to the generic functions print and summary.

Value

No return value, called to display summary information of a intPGOcc object.
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summary.1fJSDM Methods for IfJSDM Object

Description

Methods for extracting information from a fitted latent factor joint species distribution model (1fJSDM).

Usage

## S3 method for class '1fJSDM'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class '1fJSDM'
print(x, ...)
Arguments
object, x object of class 1fJSDM.
level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community”, "species”, or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class 1fJSDM, including methods to
the generic functions print and summary.

Value

No return value, called to display summary information of a 1fJSDM object.

summary . 1fMsPGOcc Methods for IfMsPGOcc Object

Description

Methods for extracting information from a fitted latent factor multi-species occupancy model (1fMsPGOcc).

Usage

## S3 method for class '1fMsPGOcc'

summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),
digits = max(3L, getOption("digits”) - 3L), ...)

## S3 method for class '1fMsPGOcc'

print(x, ...)
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Arguments
object, x object of class 1fMsPGOcc.
level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community”, "species”, or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class 1fMsPGOcc, including methods
to the generic functions print and summary.

Value

No return value, called to display summary information of a 1fMsPGOcc object.

summary .msPGOcc Methods for msPGOcc Object

Description

Methods for extracting information from fitted multi-species occupancy (msPGOcc) model.

Usage

## S3 method for class 'msPGOcc'
summary(object, level = 'both', quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'msPGOcc'
print(x, ...)
Arguments
object, x object of class msPGOcc.
level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community”, "species”, or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class msPGOcc, including methods
to the generic functions print and summary.
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Value

No return value, called to display summary information of a msPGOcc object.

summary . PGOcc Methods for PGOcc Object

Description

Methods for extracting information from fitted single-species occupancy (PGOcc) model.

Usage

## S3 method for class 'PGOcc'
summary (object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'PGOcc'’
print(x, ...)
Arguments
object, x object of class PGOcc.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class PGOcc, including methods to
the generic functions print and summary.

Value

No return value, called to display summary information of a PGOcc object.
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summary . ppcOcc Methods for ppcOcc Object

Description

Methods for extracting information from posterior predictive check objects of class ppcOcc.

Usage
## S3 method for class 'ppcOcc'
summary(object, level, digits = max(3L, getOption("digits”) - 3L), ...)
Arguments
object object of class ppcOcc.
level a quoted keyword for multi-species models that indicates the level to summarize
the posterior predictive check. Valid key words are: "community”, "species”,
or "both”.
digits number of digits to report.

currently no additional arguments

Details
A set of standard extractor functions for fitted posterior predictive check objects of class ppcOcc,
including methods to the generic function summary.

Value

No return value, called to display summary information of a ppcOcc object.

summary . sfJSDM Methods for sfISDM Object

Description

Methods for extracting information from fitted spatial factor joint species distribution models (sfJSDM).

Usage

## S3 method for class 'sfJSDM'

summary(object, level, quantiles = c(0.025, 0.5, 0.975),
digits = max(3L, getOption("digits”) - 3L), ...)

## S3 method for class 'sfJSDM'

print(x, ...)
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Arguments
object, x object of class sfIJSDM.
level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community”, "species”, or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class sfJSDM, including methods to
the generic functions print and summary.

Value

No return value, called to display summary information of a sfJSDM object.

summary . sfMsPGOcc Methods for sfMsPGOcc Object

Description

Methods for extracting information from fitted spatial factor multi-species occupancy model.

Usage

## S3 method for class 'sfMsPGOcc'
summary(object, level, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'sfMsPGOcc'
print(x, ...)
Arguments
object, x object of class sfMsPGOcc.
level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community”, "species”, or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class sfMsPGOcc, including methods
to the generic functions print and summary.
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Value

No return value, called to display summary information of a sfMsPGOcc object.

summary.spIntPGOcc Methods for spIntPGOcc Object

Description

Methods for extracting information from fitted single-species spatial integrated occupancy (spIntPGOcc)
model.

Usage

## S3 method for class 'spIntPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'spIntPGOcc'
print(x, ...)
Arguments
object, x object of class spIntPGOcc.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class spIntPGOcc, including meth-
ods to the generic functions print and summary.

Value

No return value, called to display summary information of a spIntPGOcc object.
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summary . spMsPGOcc Methods for spMsPGOcc Object

Description

Methods for extracting information from fitted multi-species spatial occupancy (spMsPGOcc) model.

Usage

## S3 method for class 'spMsPGOcc'
summary(object, level, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'spMsPGOcc'
print(x, ...)
Arguments
object, x object of class spMsPGOcc.
level a quoted keyword that indicates the level to summarize the model results. Valid
key words are: "community”, "species”, or "both".
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class spMsPGOcc, including methods
to the generic functions print and summary.

Value

No return value, called to display summary information of a spMsPGOcc object.

summary . spPGOcc Methods for spPGOcc Object

Description

Methods for extracting information from fitted single-species spatial occupancy (spPGOcc) model.

Usage

## S3 method for class 'spPGOcc'

summary(object, quantiles = c(0.025, 0.5, 0.975),
digits = max(3L, getOption("digits”) - 3L), ...)

## S3 method for class 'spPGOcc'

print(x, ...)
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Arguments
object, x object of class spPGOcc.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class spPGOcc, including methods
to the generic functions print and summary.

Value

No return value, called to display summary information of a spPGOcc object.

summary . stPGOcc Methods for stPGOcc Object

Description
Methods for extracting information from fitted multi-season single-species spatial occupancy (stPGOcc)
model.

Usage

## S3 method for class 'stPGOcc'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits”) - 3L), ...)
## S3 method for class 'stPGOcc'
print(x, ...)
Arguments
object, x object of class stPGOcc.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class stPGOcc, including methods
to the generic functions print and summary.

Value

No return value, called to display summary information of a stPGOcc object.
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summary.svcPGBinom Methods for svePGBinom Object

Description
Methods for extracting information from fitted single-species spatially-varying coefficient binomial
model (svcPGBinom).

Usage

## S3 method for class 'svcPGBinom'
summary (object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'svcPGBinom'
print(x, ...)
Arguments
object, x object of class svcPGBinom.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class svcPGBinom, including meth-
ods to the generic functions print and summary.

Value

No return value, called to display summary information of a svcPGBinom object.

summary . svcPGOcc Methods for svePGOcc Object

Description

Methods for extracting information from fitted single-species spatially-varying coefficient occu-
pancy (svcPGOcc) model.

Usage

## S3 method for class 'svcPGOcc'

summary(object, quantiles = c(0.025, 0.5, 0.975),
digits = max(3L, getOption("digits”) - 3L), ...)

## S3 method for class 'svcPGOcc'

print(x, ...)



summary.sveTPGBinom 173

Arguments
object, x object of class svcPGOcc.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class svcPGOcc, including methods
to the generic functions print and summary.

Value

No return value, called to display summary information of a svcPGOcc object.

summary . svcTPGBinom Methods for sveTPGBinom Object

Description
Methods for extracting information from fitted multi-season single-species spatially-varying coeffi-
cient binomial model (svcTPGBinom).

Usage

## S3 method for class 'svcTPGBinom'
summary(object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits”) - 3L), ...)
## S3 method for class 'svcTPGBinom'
print(x, ...)
Arguments
object, x object of class svcTPGBinom.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class svcTPGBinom, including meth-
ods to the generic functions print and summary.

Value

No return value, called to display summary information of a svcTPGBinom object.
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summary . svcTPGOcc Methods for sveTPGOcc Object

Description
Methods for extracting information from fitted multi-season single-species spatially-varying coeffi-
cient occupancy (svcTPGOcc) model.

Usage

## S3 method for class 'svcTPGOcc'
summary (object, quantiles = c(0.025, 0.5, 0.975),

digits = max(3L, getOption("digits") - 3L), ...)
## S3 method for class 'svcTPGOcc'
print(x, ...)
Arguments
object, x object of class svcTPGOcc.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class svcTPGOcc, including methods
to the generic functions print and summary.

Value

No return value, called to display summary information of a svcTPGOcc object.

summary . tPGOcc Methods for tPGOcc Object

Description

Methods for extracting information from fitted multi-season single-species occupancy (tPGOcc)
model.

Usage

## S3 method for class 'tPGOcc'

summary(object, quantiles = c(0.025, 0.5, 0.975),
digits = max(3L, getOption("digits”) - 3L), ...)

## S3 method for class 'tPGOcc'

print(x, ...)
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Arguments
object, x object of class tPGOcc.
quantiles for summary, posterior distribution quantiles to compute.
digits for summary, number of digits to report.
currently no additional arguments
Details

A set of standard extractor functions for fitted model objects of class tPGOcc, including methods to
the generic functions print and summary.

Value

No return value, called to display summary information of a tPGOcc object.

svcPGBinom Function for Fitting Single-Species Spatially-Varying Coefficient Bi-
nomial Models Using Polya-Gamma Latent Variables

Description

The function svcPGBinom fits single-species spatially-varying coefficient binomial models using
Polya-Gamma latent variables. Models are fit using Nearest Neighbor Gaussian Processes.

Usage

svcPGBinom(formula, data, inits, priors, tuning, svc.cols = 1,
cov.model = "exponential”, NNGP = TRUE,
n.neighbors = 15, search.type = "cb”, n.batch,
batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length),
n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,

k.fold.seed = 100, k.fold.only = FALSE, ...)
Arguments
formula a symbolic description of the model to be fit using R’s model syntax. Only right-
hand side of formula is specified. See example below. Random intercepts are
allowed using Ime4 syntax (Bates et al. 2015).
data a list containing data necessary for model fitting. Valid tags are y, covs, weights,

and coords. y is a numeric vector containing the binomial data with length equal
to the total number of sites (JJ). covs is a matrix or data frame containing the
covariates used in the model, with J rows for each column (variable). weights
is a numeric vector containing the binomial weights (i.e., the total number of
Bernoulli trials) at each site. If weights is not specified, svcPGBinom assumes 1
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trial at each site (i.e., presence/absence). coords is a J x 2 matrix of the obser-
vation coordinates. Note that spOccupancy assumes coordinates are specified
in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are beta,
sigma.sq, phi, w, nu, and sigma.sq.psi. nu is only specified if cov.model
= "matern”, and sigma.sq.psi is only specified if there are random effects in
formula. The value portion of each tag is the parameter’s initial value. See
priors description for definition of each parameter name. Additionally, the tag
fix can be set to TRUE to fix the starting values across all chains. If fix is not
specified (the default), starting values are varied randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,

phi.unif, sigma.sq.ig, sigma.sq.unif, nu.unif, and sigma.sq.psi.ig.
Regression coefficients (beta) are assumed to follow a normal distribution. The
hyperparameters of the normal distribution are passed as a list of length two
with the first and second elements corresponding to the mean and variance of
the normal distribution, which are each specified as vectors of length equal to
the number of coefficients to be estimated or of length one if priors are the same
for all coefficients. If not specified, prior means are set to 0 and prior variances
set to 2.73. The spatial variance parameter, sigma. sq, for each spatially-varying
coefficient is assumed to follow an inverse-Gamma distribution or a uniform dis-
tribution (default is inverse-Gamma). The spatial decay phi and smoothness nu
parameters are assumed to follow Uniform distributions. The hyperparameters
of the inverse-Gamma for sigma. sq are passed as a list with two elements cor-
responding to the shape and scale parametters, respetively, with each element
comprised of a vector equal to the number of spatially-varying coefficients to
be estimated or of length one if priors are the same for all coefficients. The
hyperparameters of any uniform priors are also passed as a list of length two
with the first and second elements corresponding to the lower and upper sup-
port, respectively, which can be passed as a vector equal to the total number of
spatially-varying coefficients to be estimated or of length one if priors are the
same for all coefficients. sigma.sq.psi are the random effect variances for any
random effects, respectively, and are assumed to follow an inverse-Gamma dis-
tribution. The hyperparameters of the inverse-Gamma distribution are passed as
alist of length two with the first and second elements corresponding to the shape
and scale parameters, respectively, which are each specified as vectors of length
equal to the number of random intercepts or of length one if priors are the same
for all random effect variances.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the intercept
if specified), or it can be specified as a character vector with names correspond-
ing to variable names in covs (for the intercept, use ’(Intercept)’).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

non

words are: "exponential”, "matern”, "spherical”, and "gaussian”.

tuning a list with each tag corresponding to a parameter name. Valid tags are phi,
sigma.sq, and nu. The value portion of each tag defines the initial variance of
the Adaptive sampler. See Roberts and Rosenthal (2009) for details.
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if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information.

number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb"” and "brute” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

the interval to report Metropolis sampler acceptance and MCMC progress.

the number of samples out of the total n.batch x batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

the number of MCMC chains to run in sequence.

specifies the number of & folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed

are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.
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k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

k.fold.seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

Value

An object of class svcPGBinom that is a list comprised of:

beta.samples  a coda object of posterior samples for the regression coefficients.
y.rep.samples a coda object of posterior samples for the fitted data values
psi.samples a coda object of posterior samples for the occurrence probability values
theta.samples a coda object of posterior samples for spatial covariance parameters.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for all spatially-varying coefficients. Dimensions correspond to MCMC
sample, coefficient, and sites.

sigma.sq.psi.samples
a coda object of posterior samples for variances of unstructured random inter-
cepts included in the model. Only included if random intercepts are specified in
formula.

beta.star.samples
a coda object of posterior samples for the unstructured random effects. Only
included if random intercepts are specified in formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc.time().

k.fold.deviance
soring rule (deviance) from k-fold cross-validation. Only included if k. fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation.
Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(1000)

# Sites

J.x <- 10

J.y <- 10

J<-J.x*xJ.y

# Binomial weights

weights <- sample(10, J, replace = TRUE)
beta <- c(0, 0.5, -0.2, 0.75)

p <- length(beta)

# No unstructured random effects
psi.RE <- list()

# Spatial parameters

sp <- TRUE

# Two spatially-varying covariates.
svc.cols <- c(1, 2)

p.svc <- length(svc.cols)

cov.model <- "exponential”
sigma.sq <- runif(p.svc, 0.4, 1.5)
phi <- runif(p.svc, 3/1, 3/0.2)

# Simulate the data

dat <- simBinom(J.x = J.x, J.y = J.y, weights = weights, beta = beta,
psi.RE = psi.RE, sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi)

# Binomial data

y <- dat$y

# Covariates

X <- dat$X

# Spatial coordinates
coords <- dat$coords
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# Package all data into a list

# Covariates

covs <- chind(X)

colnames(covs) <- c('int', 'cov.1', 'cov.2', 'cov.3')

# Data list bundle

data.list <- list(y =y,
Ccovs = covs,
coords = coords,
weights = weights)

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
sigma.sq.ig = list(a =2, b = 1),
phi.unif = list(a =3/ 1, b=37/0.1))

# Starting values
inits.list <- list(beta = @, alpha = 0,

sigma.sq = 1, phi = phi)
# Tuning
tuning.list <- list(phi = 1)
n.batch <- 10
batch.length <- 25
n.burn <- 100
n.thin <- 1
out <- svcPGBinom(formula = ~ cov.1 + cov.2 + cov.3,
svc.cols = c(1, 2),
data = data.list,
n.batch = n.batch,
batch.length = batch.length,
inits = inits.list,
priors = prior.list,
accept.rate = 0.43,
cov.model = "exponential”,
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
n.report = 2,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)
summary (out)
svcPGOcc Function for Fitting Single-Species Spatially-Varying Coefficient Oc-

cupancy Models Using Polya-Gamma Latent Variables
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The function svcPGOcc fits single-species spatially-varying coefficient occupancy models using
Polya-Gamma latent variables. Models are fit using Nearest Neighbor Gaussian Processes.

Usage

svcPGOcc(occ. formula, det.formula, data, inits, priors,
tuning, svc.cols = 1, cov.model = "exponential”, NNGP = TRUE,
n.neighbors = 15, search.type = "cb", n.batch,
batch.length, accept.rate = 0.43,
n.omp.threads = 1, verbose = TRUE, n.report = 100,

n.burn
n.thin =

= round(.10@ * n.batch * batch.length),
1, n.chains = 1, k.fold, k.fold.threads =1,

k.fold.seed = 100, k.fold.only = FALSE, ...)

Arguments

occ.formula

det.formula

data

inits

a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using lme4 syntax (Bates et al.
2015).

a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, and coords. Yy is the detection-nondetection data matrix or data
frame with first dimension equal to the number of sites (J) and second dimen-
sion equal to the maximum number of replicates at a given site. occ.covs is
a matrix or data frame containing the variables used in the occupancy portion
of the model, with J rows for each column (variable). det.covs is a list of
variables included in the detection portion of the model. Each list element is
a different detection covariate, which can be site-level or observational-level.
Site-level covariates are specified as a vector of length J while observation-
level covariates are specified as a matrix or data frame with the number of rows
equal to J and number of columns equal to the maximum number of replicates
at a given site. coords is a J X 2 matrix of the observation coordinates. Note
that spOccupancy assumes coordinates are specified in a projected coordinate
system.

a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.p. nuis only specified
if cov.model = "matern”, sigma.sq.p is only specified if there are random ef-
fects in det. formula, and sigma.sq.psi is only specified if there are random
effects in occ. formula. The value portion of each tag is the parameter’s initial
value. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.
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priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, phi.unif, sigma.sq.ig, sigma.sq.unif, nu.unif, sigma.sq.psi.ig,
and sigma.sq.p.1ig. Occurrence (beta) and detection (alpha) regression coef-
ficients are assumed to follow a normal distribution. The hyperparameters of the
normal distribution are passed as a list of length two with the first and second ele-
ments corresponding to the mean and variance of the normal distribution, which
are each specified as vectors of length equal to the number of coefficients to be
estimated or of length one if priors are the same for all coefficients. If not speci-
fied, prior means are set to O and prior variances set to 2.73. The spatial variance
parameter, sigma.sq, is assumed to follow an inverse-Gamma distribution or
a uniform distribution (default is inverse-Gamma). The spatial decay phi and
smoothness nu parameters are assumed to follow Uniform distributions. The hy-
perparameters of the inverse-Gamma for sigma. sq are passed as a list with two
elements corresponding to the shape and scale parameters, respetively, with each
element comprised of a vector equal to the number of spatially-varying coeffi-
cients to be estimated or of length one if priors are the same for all coefficients.
The hyperparameters of any uniform priors are also passed as a list of length
two with the first and second elements corresponding to the lower and upper
support, respectively, which can be passed as a vector equal to the total number
of spatially-varying coefficients to be estimated or of length one if priors are the
same for all coefficients. sigma.sq.psi and sigma.sq.p are the random effect
variances for any occurrence or detection random effects, respectively, and are
assumed to follow an inverse-Gamma distribution. The hyperparameters of the
inverse-Gamma distribution are passed as a list of length two with the first and
second elements corresponding to the shape and scale parameters, respectively,
which are each specified as vectors of length equal to the number of random
intercepts or of length one if priors are the same for all random effect variances.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the inter-
cept if specified), or it can be specified as a character vector with names cor-
responding to variable names in occ.covs (for the intercept, use ’(Intercept)’).
svc. cols default argument of 1 results in a spatial occupancy model analogous
to spPGOcc (assuming an intercept is included in the model).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

n o n

words are: "exponential”, "matern”, "spherical”, and "gaussian".

tuning a list with each tag corresponding to a parameter name. Valid tags are phi, nu,
and sigma.sq. The value portion of each tag defines the initial variance of the
Adaptive sampler. See Roberts and Rosenthal (2009) for details.

NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. Only NNGP
= TRUE is currently supported for spatially-varying coefficient models.

n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
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and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb” and "brute"” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

the interval to report Metropolis sampler acceptance and MCMC progress.

the number of samples out of the total n.batch x batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

the number of MCMC chains to run in sequence.

specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed

are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.
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k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

Value

An object of class svcPGOcc that is a list comprised of:

beta.samples  a coda object of posterior samples for the occurrence regression coefficients.
alpha.samples a coda object of posterior samples for the detection regression coefficients.
z.samples a coda object of posterior samples for the latent occurrence values
psi.samples a coda object of posterior samples for the latent occurrence probability values
theta.samples a coda object of posterior samples for spatial covariance parameters.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for all spatially-varying coefficients. Dimensions correspond to MCMC
sample, coefficient, and sites.

sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ. formula.

sigma.sq.p.samples
a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.

beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.

alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det. formula.

like.samples a coda object of posterior samples for the likelihood value associated with each
site. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc. time().

k.fold.deviance
soring rule (deviance) from k-fold cross-validation. Only included if k. fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability values are not included in the model object, but can be
extracted using fitted().
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Examples

set.seed(400)

# Simulate Data —————————=—=————-—- o

J.x <=8

J.y <-8

J<-J.x*xJ.y

n.rep <- sample(2:4, J, replace = TRUE)

beta <- c(0.5, 2)

p.occ <- length(beta)

alpha <- c(0, 1)

p.det <- length(alpha)

phi <- c(3/ .6, 3/ .8)

sigma.sq <- c(1.2, 0.7)

svc.cols <- c(1, 2)

dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential',
svc.cols = svc.cols)

Detection-nondetection data

<- dat$y

Occupancy covariates

<- dat$X

Detection covarites

.p <- dat$X.p

Spatial coordinates

coords <- dat$coords

HOX H X <

# Package all data into a list


https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1080/01621459.2015.1044091
https://doi.org/10.1080/10618600.2018.1537924

186

occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 21)
data.list <- list(y =y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

# Number of batches

n.batch <- 10

# Batch length

batch.length <- 25

n.iter <- n.batch * batch.length

# Priors

prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
sigma.sq.ig = list(a =2, b = 1),
phi.unif = list(a = 3/1, b = 3/.1))

# Initial values

inits.list <- list(alpha = 0, beta = 0,
phi =3 / .5,
sigma.sq = 2,

w = matrix(@, nrow = length(svc.cols), ncol = nrow(X)),

z = apply(y, 1, max, na.rm = TRUE))
# Tuning

tuning.list <- list(phi = 1)

out <- svcPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
svc.cols = c(1, 2),
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1)

summary (out)

svcTPGBinom




svceTPGBinom

svcTPGBinom

187

Function for Fitting Multi-Season Single-Species Spatially-Varying
Coefficient Binomial Models Using Polya-Gamma Latent Variables

Description

The function svcTPGBinom fits multi-season single-species spatially-varying coefficient binomial
models using Polya-Gamma latent variables. Models are fit using Nearest Neighbor Gaussian Pro-

CESSES.

Usage

svcTPGBinom(formula, data, inits, priors,

Arguments

formula

data

inits

tuning, svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,

batch.length, accept.rate = 0.43, n.omp.threads = 1,

verbose = TRUE, ar1 = FALSE, n.report = 100,

n.burn = round(.10 * n.batch * batch.length),

n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

a symbolic description of the model to be fit using R’s model syntax. Only right-
hand side of formula is specified. See example below. Random intercepts are
allowed using Ime4 syntax (Bates et al. 2015).

a list containing data necessary for model fitting. Valid tags are y, covs, weights,
and coords. y is a two-dimensional array with the rows corresponding to the
number of sites (J) and columns corresponding to the maximum number of pri-
mary time periods (i.e., years or seasons). covs is a list of variables included in
the occurrence portion of the model. Each list element is a different occurrence
covariate, which can be site level or site/primary time period level. Site-level
covariates are specified as a vector of length J while site/primary time period
level covariates are specified as a matrix with rows corresponding to sites and
columns correspond to primary time periods. weights is a site by time period
matrix containing the binomial weights (i.e., the total number of Bernoulli trials)
at each site/time period combination. Note that missing values are allowed and
should be specified as NA. coords is a J x 2 matrix of the observation coordi-
nates. Note that spOccupancy assumes coordinates are specified in a projected
coordinate system.

a list with each tag corresponding to a parameter name. Valid tags are beta,
sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.t, and rho. nu is only speci-
fied if cov.model = "matern”, and sigma.sq.psi is only specified if there are
random effects in formula. sigma.sq.t and rho are only relevant when ar1 =
TRUE. The value portion of each tag is the parameter’s initial value. See priors
description for definition of each parameter name. Additionally, the tag fix can
be set to TRUE to fix the starting values across all chains. If fix is not specified
(the default), starting values are varied randomly across chains.
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priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,

phi.unif, sigma.sq.ig, sigma.sq.unif,nu.unif, sigma.sq.psi.ig,sigma.sq.t.ig,
and rho.unif. Regression coefficients (beta) are assumed to follow a normal
distribution. The hyperparameters of the normal distribution are passed as a
list of length two with the first and second elements corresponding to the mean
and variance of the normal distribution, which are each specified as vectors of
length equal to the number of coefficients to be estimated or of length one if
priors are the same for all coefficients. If not specified, prior means are set to
0 and prior variances set to 2.73. The spatial variance parameter, sigma. sq,
for each spatially-varying coefficient is assumed to follow an inverse-Gamma
distribution or a uniform distribution (default is inverse-Gamma). The spatial
decay phi and smoothness nu parameters are assumed to follow Uniform distri-
butions. The hyperparameters of the inverse-Gamma for sigma.sq are passed
as a list with two elements corresponding to the shape and scale parametters,
respetively, with each element comprised of a vector equal to the number of
spatially-varying coefficients to be estimated or of length one if priors are the
same for all coefficients. The hyperparameters of any uniform priors are also
passed as a list of length two with the first and second elements corresponding to
the lower and upper support, respectively, which can be passed as a vector equal
to the total number of spatially-varying coefficients to be estimated or of length
one if priors are the same for all coefficients. sigma.sq.psi are the random
effect variances for any random effects, respectively, and are assumed to follow
an inverse-Gamma distribution. The hyperparameters of the inverse-Gamma
distribution are passed as a list of length two with the first and second elements
corresponding to the shape and scale parameters, respectively, which are each
specified as vectors of length equal to the number of random intercepts or of
length one if priors are the same for all random effect variances. sigma.sq.t
and rho are the AR(1) variance and correlation parameters for the AR(1) zero-
mean temporal random effects, respectively. sigma.sq.t is assumed to follow
an inverse-Gamma distribution, where the hyperparameters are specified as a
vector with elements corresponding to the shape and scale parameters, respec-
tively. rho is assumed to follow a uniform distribution, where the hyperparam-
eters are specified in a vector of length two with elements corresponding to the
lower and upper bounds of the uniform prior.

svc.cols a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the intercept
if specified), or it can be specified as a character vector with names correspond-
ing to variable names in covs (for the intercept, use ’(Intercept)’).

cov.model a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

non

words are: "exponential”, "matern”, "spherical”, and "gaussian”.
tuning a list with each tag corresponding to a parameter name. Valid tags are phi,
sigma.sq, nu, and rho. The value portion of each tag defines the initial variance
of the Adaptive sampler. See Roberts and Rosenthal (2009) for details.
NNGP if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used.
See Datta et al. (2016) and Finley et al. (2019) for more information. Currently,
only NNGP = TRUE is supported for multi-season occupancy models.
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n.neighbors number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

search. type a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb” and "brute” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length  the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

aril logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report Metropolis sampler acceptance and MCMC progress.

n.burn the number of samples out of the total n.batch x batch.length samples in
each chain to discard as burn-in. By default, the first 10% of samples is dis-
carded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of MCMC chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scoring
rule, we use the model deviance as described in Hooten and Hobbs (2015). For
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k.fold.threads

k.fold.seed

k.fold.only

Value

svcTPGBinom

cross-validation in multi-season models, the data are split along the site dimen-
sion, such that each hold-out data set consists of a J / k.fold sites sampled
over all primary time periods during which data are available at each given site.
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

An object of class svcTPGBinom that is a list comprised of:

beta.samples

y.rep.samples

psi.samples

theta.samples

w.samples

a coda object of posterior samples for the regression coefficients.

a three-dimensional array of posterior samples for the fitted data values, with
dimensions corresponding to posterior sample, site, and primary time period.

a three-dimensional array of posterior samples for the occurrence probability
values, with dimensions corresponding to posterior sample, site, and primary
time period.

a coda object of posterior samples for spatial covariance parameters and tempo-
ral covariance parameters if ar1 = TRUE.

a three-dimensional array of posterior samples for the latent spatial random ef-
fects for all spatially-varying coefficients. Dimensions correspond to MCMC
sample, coefficient, and sites.

sigma.sq.psi.samples

a coda object of posterior samples for variances of unstructured random inter-
cepts included in the model. Only included if random intercepts are specified in
formula.

beta.star.samples

eta.samples

like.samples

rhat
ESS

run.time

a coda object of posterior samples for the unstructured random effects. Only
included if random intercepts are specified in formula.

a coda object of posterior samples for the AR(1) random effects for each primary
time period. Only included if ar1 = TRUE.

a three-dimensional array of posterior samples for the likelihood values associ-
ated with each site and primary time period. Used for calculating WAIC.

a list of Gelman-Rubin diagnostic values for some of the model parameters.
a list of effective sample sizes for some of the model parameters.

execution time reported using proc.time().
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k.fold.deviance
soring rule (deviance) from k-fold cross-validation. Only included if k. fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that if k. fold.only = TRUE, the return list object will only contain run. time and
k.fold.deviance

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(1000)
Sites
X <= 15
.y <= 15
<-J.x*xJ.y
Years sampled
.time <- sample(10@, J, replace = TRUE)
Binomial weights
weights <- matrix(NA, J, max(n.time))
for (j in 1:J7) {
weights[j, 1:n.time[j]] <- sample(5, n.time[j], replace = TRUE)
3
# Occurrence -—---—--—————-——-——-——--——--
beta <- c(-2, -0.5, -0.2, 0.75)
p.occ <- length(beta)
trend <- TRUE
sp.only <- @

H S o GGy H
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psi.RE <- list()

# Spatial parameters ---------------———-
sp <- TRUE

svc.cols <- c(1, 2, 3)

p.svc <- length(svc.cols)

cov.model <- "exponential”

sigma.sq <- runif(p.svc, 0.1, 1)

phi <- runif(p.svc, 3/1, 3/0.2)

# Temporal parameters -----------------
ar1l <- TRUE

rho <- 0.8

sigma.sqg.t <- 1

# Get all the data
dat <- simTBinom(J.x = J.x, J.y = J.y, n.time = n.time, weights = weights, beta = beta,
psi.RE = psi.RE, sp.only = sp.only, trend = trend,
sp = sp, svc.cols = svc.cols,
cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
rho = rho, sigma.sq.t = sigma.sq.t, arl = TRUE, x.positive = FALSE)

# Prep the data for spOccupancy ——--—-=-——=—=————=—————— -~
y <- dat$y

X <- dat$x

X.re <- dat$X.re

coords <- dat$coords

# Package all data into a list
covs <- list(int = X[, , 11,
trend = X[, , 21,
cov.1 = X[, , 31,
cov.2 = X[, , 41)
# Data list bundle
data.list <- list(y =y,
covs = covs,
weights = weights,
coords = coords)
# Priors
prior.list <- list(beta.normal = list(mean = @, var = 2.72),
sigma.sq.ig = list(a =2, b = 1),
phi.unif = list(a = 3/1, b = 3/.1),
sigma.sq.t.ig = c(2, 0.5),
rho.unif = c(-1, 1))

# Starting values

inits.list <- list(beta = beta, alpha = 0,
sigma.sq = 1, phi =3/
sigma.sq.t = 0.5, rho =

# Tuning

tuning.list <- list(phi = ©.4, nu = 0.3, rho = 0.2)

# MCMC settings
n.batch <- 2
n.burn <- @
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n.thin <- 1
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out <- svcTPGBinom(formula = ~ trend + cov.1 + cov.2,

svc.cols = svc.cols,

data = data.list,

n.batch = n.batch,
batch.length = 25,

inits = inits.list,

priors = prior.list,
accept.rate = 0.43,
cov.model = "exponential”,
ar1 = TRUE,

tuning = tuning.list,
n.omp.threads = 1,

verbose = TRUE,

NNGP = TRUE,

n.neighbors = 5,

n.report =1,

n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

svcTPGOcc

Function for Fitting Multi-Season Single-Species Spatially-Varying
Coefficient Occupancy Models Using Polya-Gamma Latent Variables

Description

Function for fitting multi-season single-species spatially-varying coefficient occupancy models us-
ing Polya-Gamma latent variables. Models are fit using Nearest Neighbor Gaussian Processes.

Usage

svcTPGOcc(occ. formula, det.formula, data, inits, priors,

Arguments

tuning, svc.cols = 1, cov.model = 'exponential', NNGP = TRUE,
n.neighbors = 15, search.type = 'cb', n.batch,

batch.length, accept.rate = .43, n.omp.threads = 1,

verbose = TRUE, arl = FALSE, n.report = 100,

n.burn = round(.10 * n.batch * batch.length),

n.thin = 1, n.chains = 1, k.fold, k.fold.threads = 1,
k.fold.seed = 100, k.fold.only = FALSE, ...)

occ.formula a symbolic description of the model to be fit for the occurrence portion of the

model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using Ime4 syntax (Bates et al.
2015).
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det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
det.covs, and coords. y is a three-dimensional array with first dimension equal
to the number of sites (J), second dimension equal to the maximum number of
primary time periods (i.e., years or seasons), and third dimension equal to the
maximum number of replicates at a given site. occ.covs is a list of variables
included in the occurrence portion of the model. Each list element is a different
occurrence covariate, which can be site level or site/primary time period level.
Site-level covariates are specified as a vector of length J while site/primary time
period level covariates are specified as a matrix with rows corresponding to sites
and columns correspond to primary time periods. Similarly, det.covs is a list
of variables included in the detection portion of the model, with each list ele-
ment corresponding to an individual variable. In addition to site-level and/or
site/primary time period-level, detection covariates can also be observational-
level. Observation-level covariates are specified as a three-dimensional array
with first dimension corresponding to sites, second dimension corresponding to
primary time period, and third dimension corresponding to replicate. coords is
a J x 2 matrix of the observation coordinates. Note that spOccupancy assumes
coordinates are specified in a projected coordinate system.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq, phi, w, nu, sigma.sq.psi, sigma.sq.p, sigma.sq.t, rho.
The value portion of each tag is the parameter’s initial value. sigma.sq.psi and
sigma.sq.p are only relevant when including random effects in the occurrence
and detection portion of the occupancy model, respectively. nu is only specified
if cov.model = "matern”. sigma.sq.t and rho are only relevant when ar1 =
TRUE. See priors description for definition of each parameter name. Addition-
ally, the tag fix can be set to TRUE to fix the starting values across all chains.
If fix is not specified (the default), starting values are varied randomly across
chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, sigma.sq.psi.ig, sigma.sq.p.ig, phi.unif, sigma.sq.ig,
nu.unif, sigma.sq.t.ig, and rho.unif. Occupancy (beta) and detection
(alpha) regression coefficients are assumed to follow a normal distribution. The
hyperparameters of the normal distribution are passed as a list of length two
with the first and second elements corresponding to the mean and variance of
the normal distribution, which are each specified as vectors of length equal to
the number of coefficients to be estimated or of length one if priors are the same
for all coefficients. If not specified, prior means are set to 0 and prior variances
set to 2.72. sigma.sq.psi and sigma.sq.p are the random effect variances for
any occurrence or detection random effects, respectively, and are assumed to fol-
low an inverse Gamma distribution. The hyperparameters of the inverse-Gamma
distribution are passed as a list of length two with first and second elements cor-
responding to the shape and scale parameters, respectively, which are each spec-
ified as vectors of length equal to the number of random intercepts or of length
one if priors are the same for all random effect variances. The spatial variance
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tuning

svc.cols

cov.model

NNGP

n.neighbors

search. type
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parameter, sigma. sq, is assumed to follow an inverse-Gamma distribution. The
spatial decay phi and smoothness nu parameters are assumed to follow Uniform
distributions. The hyperparameters of the inverse-Gamma for sigma.sq.ig are
passed as a list of length two, with the first and second elements corresponding
to the shape and scale parameters, respectively, with each element comprised of
a vector equal to the number of spatially-varying coefficients to be estimated or
of length one if priors are the same for all coefficients. The hyperparameters
of the uniform are also passed as a list of length two with the first and second
elements corresponding to the lower and upper support, respectively, which can
be passed as a vector equal to the number of spatially-varying coefficients to be
estimated or of length one if priors are the same for all coefficients. sigma.sq.t
and rho are the AR(1) variance and correlation parameters for the AR(1) zero-
mean temporal random effects, respectively. sigma.sq.t is assumed to follow
an inverse-Gamma distribution, where the hyperparameters are specified as a
vector with elements corresponding to the shape and scale parameters, respec-
tively. rho is assumed to follow a uniform distribution, where the hyperparam-
eters are specified in a vector of length two with elements corresponding to the
lower and upper bounds of the uniform prior.

a list with each tag corresponding to a parameter name. Valid tags are phi,
sigma.sq, nu, and rho. The value portion of each tag defines the initial variance
of the Adaptive sampler. See Roberts and Rosenthal (2009) for details.

a vector indicating the variables whose effects will be estimated as spatially-
varying coefficients. svc.cols can be an integer vector with values indicating
the order of covariates specified in the model formula (with 1 being the inter-
cept if specified), or it can be specified as a character vector with names cor-
responding to variable names in occ.covs (for the intercept, use ’(Intercept)’).
svc. cols default argument of 1 results in a spatial occupancy model analogous
to stPGOcc (assuming an intercept is included in the model).

a quoted keyword that specifies the covariance function used to model the spatial
dependence structure among the observations. Supported covariance model key

n o n

words are: "exponential”, "matern”, "spherical”, and "gaussian".

if TRUE, model is fit with an NNGP. If FALSE, a full Gaussian process is used. See
Datta et al. (2016) and Finley et al. (2019) for more information. Currently only
NNGP = TRUE is supported for multi-season single-species occupancy models.

number of neighbors used in the NNGP. Only used if NNGP = TRUE. Datta et
al. (2016) showed that 15 neighbors is usually sufficient, but that as few as 5
neighbors can be adequate for certain data sets, which can lead to even greater
decreases in run time. We recommend starting with 15 neighbors (the default)
and if additional gains in computation time are desired, subsequently compare
the results with a smaller number of neighbors using WAIC or k-fold cross-
validation.

a quoted keyword that specifies the type of nearest neighbor search algorithm.
Supported method key words are: "cb” and "brute”. The "cb"” should gener-
ally be much faster. If locations do not have identical coordinate values on the
axis used for the nearest neighbor ordering then "cb” and "brute"” should pro-
duce identical neighbor sets. However, if there are identical coordinate values
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on the axis used for nearest neighbor ordering, then "cb” and "brute” might
produce different, but equally valid, neighbor sets, e.g., if data are on a grid.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length  the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp.threads up to the number of
hyperthreaded cores. Note, n.omp. threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

aril logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report MCMC progress.

n.burn the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scoring
rule, we use the model deviance as described in Hooten and Hobbs (2015). For
cross-validation in multi-season models, the data are split along the site dimen-
sion, such that each hold-out data set consists of a J / k.fold sites sampled
over all primary time periods during which data are available at each given site.
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

k.fold.seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments
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Value

An object of class svcTPGOcc that is a list comprised of:

beta.samples  a coda object of posterior samples for the occupancy regression coefficients.

alpha.samples a coda object of posterior samples for the detection regression coefficients.

z.samples a three-dimensional array of posterior samples for the latent occupancy values,
with dimensions corresponding to posterior sample, site, and primary time pe-
riod.

psi.samples a three-dimensional array of posterior samples for the latent occupancy probabil-

ity values, with dimensions corresponding to posterior sample, site, and primary
time period.

theta.samples a coda object of posterior samples for spatial covariance parameters and tempo-
ral covariance parameters if ar1 = TRUE.

w.samples a three-dimensional array of posterior samples for the latent spatial random ef-
fects for all spatially-varying coefficients. Dimensions correspond to MCMC
sample, coefficient, and sites.

sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ. formula.

sigma.sq.p.samples
a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.

beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.

alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det. formula.

eta.samples a coda object of posterior samples for the AR(1) random effects for each primary
time period. Only included if ar1 = TRUE.

like.samples  a three-dimensional array of posterior samples for the likelihood values associ-
ated with each site and primary time period. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc. time().

k.fold.deviance
scoring rule (deviance) from k-fold cross-validation. Only included if k. fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted(). Note that if k. fold.only = TRUE, the return list object will
only contain run. time and k. fold.deviance.
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Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)

Jeffrey W. Doser <doserjef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>
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Examples

set.seed(1000)
Sites
X <= 15
.y <- 15
<-J.x*xJ.y
Years sampled
.time <- sample(1@, J, replace = TRUE)
.time.max <- max(n.time)
Replicates
.rep <- matrix(NA, J, max(n.time))
for (j in 1:7) {
n.replj, 1:n.time[j]] <- sample(4, n.time[j], replace = TRUE)
3
# Occurrence ------=---=---=---=-----------
beta <- c(-2, -0.5, -0.2, 0.75)
trend <- TRUE
sp.only <- @
psi.RE <- list()
# Detection -------—----—-—----mmmmm o

= B S~ SR S S Y
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alpha <- c(1, 0.7, -0.5)

p.RE <- list()

# Spatial parameters ----------------—-

sp <- TRUE
svc.cols <- c(1

» 2’ 3)

p.svc <- length(svc.cols)
cov.model <- "exponential”
sigma.sq <- runif(p.svc, 0.1, 1)

phi <- runif(p.

rho <- 0.8
sigma.sq.t <- 1
ar1 <- TRUE

sve, 3/ 1, 3/ 0.2)

X.positive <- FALSE

# Get all the data
dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,

# Data summary
apply(dat$psi,

<- dat$y
<- dat$X

.p <- dat$X.p

X X X X< H H

beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE,

sp = sp, cov.model = cov.model, sigma.sq = sigma.sq, phi = phi,
svc.cols = svc.cols, ar1l = arl, rho = rho, sigma.sq.t = sigma.sq.t,

X.positive = x.positive)

2, mean)

Prep the data for svcTPGOCC —-———=———=———=————————— e
Full data set

.re <- dat$X.re

.p.re <- dat$X.p.re

coords <- dat$coords

# Package all data into a list
occ.covs <- list(int = X[, , 11,

# Detection

det.covs <- list(det.cov.1

trend = X[, , 21,
occ.cov.1 = X[, , 31,
occ.cov.2 = X[, , 41)

X'pl:y y 2:|v
det.cov.2 = X.p[, , , 3D

# Data list bundle
data.list <- list(y =y,

# Priors

0CC.COVS = 0CC.COVS,
det.covs = det.covs,
coords = coords)

prior.list <- list(beta.normal = list(mean = @, var = 2.72),

alpha.normal = list(mean = @, var = 2.72),
phi.unif = list(a = 3/1, b = 3/.1))

# Starting values

199
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z.init <- apply(y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > 0))
inits.list <- list(beta = @, alpha = 0,
sigma.sq = 1, phi = 3 / 0.5,
z = z.init, nu = 1)
# Tuning
tuning.list <- list(phi = 0.4, nu = 0.3, rho = 0.5, sigma.sq = 0.5)

# MCMC settings
n.batch <- 2
n.burn <- 0
n.thin <- 1

# Run the model
out <- svcTPGOcc(occ.formula = ~ trend + occ.cov.1 + occ.cov.2,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
tuning = tuning.list,
priors = prior.list,

cov.model = "exponential”,
svc.cols = svc.cols,

NNGP = TRUE,

arl = TRUE,

n.neighbors = 5,
n.batch = n.batch,
batch.length = 25,
verbose = TRUE,
n.report = 25,
n.burn = n.burn,
n.thin = n.thin,
n.chains = 1)

I > >

tPGOcc Function for Fitting Multi-Season Single-Species Occupancy Models
Using Polya-Gamma Latent Variables

Description

Function for fitting multi-season single-species occupancy models using Polya-Gamma latent vari-
ables.

Usage

tPGOcc(occ.formula, det.formula, data, inits, priors, tuning,
n.batch, batch.length, accept.rate = 0.43, n.omp.threads = 1,
verbose = TRUE, ar1 = FALSE, n.report = 100,
n.burn = round(.10 * n.batch * batch.length), n.thin = 1, n.chains = 1,
k.fold, k.fold.threads = 1, k.fold.seed = 100, k.fold.only = FALSE, ...)
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Arguments

occ.formula a symbolic description of the model to be fit for the occurrence portion of the
model using R’s model syntax. Only right-hand side of formula is specified. See
example below. Random intercepts are allowed using Ime4 syntax (Bates et al.
2015).

det.formula a symbolic description of the model to be fit for the detection portion of the
model using R’s model syntax. Only right-hand side of formula is specified.
See example below. Random intercepts are allowed using Ime4 syntax (Bates et
al. 2015).

data a list containing data necessary for model fitting. Valid tags are y, occ.covs,
and det.covs. y is a three-dimensional array with first dimension equal to
the number of sites (J), second dimension equal to the maximum number of
primary time periods (i.e., years or seasons), and third dimension equal to the
maximum number of replicates at a given site. occ.covs is a list of variables
included in the occurrence portion of the model. Each list element is a different
occurrence covariate, which can be site level or site/primary time period level.
Site-level covariates are specified as a vector of length J while site/primary time
period level covariates are specified as a matrix with rows corresponding to sites
and columns correspond to primary time periods. Similarly, det.covs is a list
of variables included in the detection portion of the model, with each list ele-
ment corresponding to an individual variable. In addition to site-level and/or
site/primary time period-level, detection covariates can also be observational-
level. Observation-level covariates are specified as a three-dimensional array
with first dimension corresponding to sites, second dimension corresponding to
primary time period, and third dimension corresponding to replicate.

inits a list with each tag corresponding to a parameter name. Valid tags are z, beta,
alpha, sigma.sq.psi, sigma.sq.p, sigma.sq.t, and rho. The value portion
of each tag is the parameter’s initial value. sigma.sq.psi and sigma.sq.p are
only relevant when including random effects in the occurrence and detection
portion of the occupancy model, respectively. sigma.sq.t and rho are only
relevant when ar1 = TRUE. See priors description for definition of each param-
eter name. Additionally, the tag fix can be set to TRUE to fix the starting values
across all chains. If fix is not specified (the default), starting values are varied
randomly across chains.

priors a list with each tag corresponding to a parameter name. Valid tags are beta.normal,
alpha.normal, sigma.sq.psi.ig, sigma.sq.p.ig, sigma.sqg.t.ig,and rho.unif.
Occupancy (beta) and detection (alpha) regression coefficients are assumed to
follow a normal distribution. The hyperparameters of the normal distribution are
passed as a list of length two with the first and second elements corresponding
to the mean and variance of the normal distribution, which are each specified as
vectors of length equal to the number of coefficients to be estimated or of length
one if priors are the same for all coefficients. If not specified, prior means are
set to 0 and prior variances set to 2.72. sigma.sq.psi and sigma.sq.p are the
random effect variances for any unstructured occurrence or detection random
effects, respectively, and are assumed to follow an inverse Gamma distribution.
The hyperparameters of the inverse-Gamma distribution are passed as a list of
length two with first and second elements corresponding to the shape and scale
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parameters, respectively, which are each specified as vectors of length equal
to the number of random intercepts or of length one if priors are the same for
all random effect variances. sigma.sq.t and rho are the AR(1) variance and
correlation parameters for the AR(1) zero-mean temporal random effects, re-
spectively. sigma.sq.t is assumed to follow an inverse-Gamma distribution,
where the hyperparameters are specified as a vector with elements correspond-
ing to the shape and scale parameters, respectively. rho is assumed to follow
a uniform distribution, where the hyperparameters are specified in a vector of
length two with elements corresponding to the lower and upper bounds of the
uniform prior.

tuning a list with each tag corresponding to a parameter name. Valid tags are rho.
The value portion of each tag defines the initial tuning variance of the Adaptive
sampler. See Roberts and Rosenthal (2009) for details.

n.batch the number of MCMC batches in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

batch.length the length of each MCMC batch in each chain to run for the Adaptive MCMC
sampler. See Roberts and Rosenthal (2009) for details.

accept.rate target acceptance rate for Adaptive MCMC. Default is 0.43. See Roberts and
Rosenthal (2009) for details.

n.omp.threads a positive integer indicating the number of threads to use for SMP parallel pro-
cessing. The package must be compiled for OpenMP support. For most Intel-
based machines, we recommend setting n.omp. threads up to the number of
hyperthreaded cores. Note, n.omp.threads > 1 might not work on some sys-
tems. Currently only relevant for spatial models.

verbose if TRUE, messages about data preparation, model specification, and progress of
the sampler are printed to the screen. Otherwise, no messages are printed.

aril logical value indicating whether to include an AR(1) zero-mean temporal ran-
dom effect in the model. If FALSE, the model is fit without an AR(1) temporal
autocovariance structure. If TRUE, an AR(1) random effect is included in the
model to account for temporal autocorrelation across the primary time periods.

n.report the interval to report MCMC progress. Note this is specified in terms of batches,
not MCMC samples.

n.burn the number of samples out of the total n. samples to discard as burn-in for each
chain. By default, the first 10% of samples is discarded.

n.thin the thinning interval for collection of MCMC samples. The thinning occurs after
the n.burn samples are discarded. Default value is set to 1.

n.chains the number of chains to run in sequence.

k.fold specifies the number of k folds for cross-validation. If not specified as an argu-

ment, then cross-validation is not performed and k. fold. threads and k. fold. seed
are ignored. In k-fold cross-validation, the data specified in data is randomly
partitioned into k equal sized subsamples. Of the k subsamples, k - 1 subsam-
ples are used to fit the model and the remaining k samples are used for predic-
tion. The cross-validation process is repeated k times (the folds). As a scor-
ing rule, we use the model deviance as described in Hooten and Hobbs (2015).
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For cross-validation in multi-season models, the data are split along the site di-
mension, such that each hold-out data set consists of J / k. fold sites sampled
over all primary time periods during which data are available at each given site.
Cross-validation is performed after the full model is fit using all the data. Cross-
validation results are reported in the k. fold.deviance object in the return list.

k.fold.threads number of threads to use for cross-validation. If k.fold.threads > 1 parallel
processing is accomplished using the foreach and doParallel packages. Ignored
if k. fold is not specified.

k.fold.seed seed used to split data set into k. fold parts for k-fold cross-validation. Ignored
if k. fold is not specified.

k.fold.only a logical value indicating whether to only perform cross-validation (TRUE) or
perform cross-validation after fitting the full model (FALSE). Default value is
FALSE.

currently no additional arguments

Value

An object of class tPGOcc that is a list comprised of:

beta.samples a coda object of posterior samples for the occupancy regression coefficients.
alpha.samples a coda object of posterior samples for the detection regression coefficients.

z.samples a three-dimensional array of posterior samples for the latent occupancy values,
with dimensions corresponding to posterior sample, site, and primary time pe-
riod. Note this object will contain predicted occupancy values for sites/primary
time periods that were not sampled.

psi.samples a three-dimensional array of posterior samples for the latent occupancy probabil-
ity values, with dimensions corresponding to posterior sample, site, and primary
time period. Note this object will contained predicted occupancy probabilities
for sites/primary time periods that were not sampled.

sigma.sq.psi.samples
a coda object of posterior samples for variances of random intercepts included
in the occupancy portion of the model. Only included if random intercepts are
specified in occ. formula.

sigma.sq.p.samples
a coda object of posterior samples for variances of random intercpets included
in the detection portion of the model. Only included if random intercepts are
specified in det. formula.

beta.star.samples
a coda object of posterior samples for the occurrence random effects. Only
included if random intercepts are specified in occ. formula.

alpha.star.samples
a coda object of posterior samples for the detection random effects. Only in-
cluded if random intercepts are specified in det. formula.

theta.samples a coda object of posterior samples for the AR(1) variance (sigma.sq.t) and
correlation (rho) parameters. Only included if ar1 = TRUE.
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eta.samples a coda object of posterior samples for the AR(1) random effects for each primary
time period. Only included if ar1 = TRUE

like.samples  a three-dimensional array of posterior samples for the likelihood values associ-
ated with each site and primary time period. Used for calculating WAIC.

rhat a list of Gelman-Rubin diagnostic values for some of the model parameters.
ESS a list of effective sample sizes for some of the model parameters.
run.time execution time reported using proc. time().

k.fold.deviance
scoring rule (deviance) from k-fold cross-validation. Only included if k. fold is
specified in function call.

The return object will include additional objects used for subsequent prediction and/or model fit
evaluation. Note that detection probability estimated values are not included in the model object,
but can be extracted using fitted(). Note that if k. fold.only = TRUE, the return list object will
only contain run. time and k. fold.deviance.

Note

Some of the underlying code used for generating random numbers from the Polya-Gamma distribu-
tion is taken from the pgdraw package written by Daniel F. Schmidt and Enes Makalic. Their code
implements Algorithm 6 in PhD thesis of Jesse Bennett Windle (2013) https://repositories.
lib.utexas.edu/handle/2152/21842.

Author(s)
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Examples

set.seed(500)

# Sites

J.x <- 10

J.y <- 10

J<-J.x*Jy

# Primary time periods

n.time <- sample(5:10, J, replace = TRUE)
n.time.max <- max(n.time)

# Replicates

n.rep <- matrix(NA, J, max(n.time))

for (j in 1:J7) {

n.rep[j, 1:n.time[j]] <- sample(1:4, n.time[j], replace = TRUE)
3
# Occurrence ------——--————-——-———-—-—-—-
beta <- c(0.4, 0.5, -0.9)
trend <- TRUE
sp.only <- @
psi.RE <- list()
# Detection -----------——-—--—-——m—mo—o
alpha <- c(-1, 0.7, -0.5)
p.RE <- list()
# Temporal parameters -----------------
rho <- 0.7
sigma.sq.t <- 0.6

# Get all the data

dat <- simTOcc(J.x = J.x, J.y = J.y, n.time = n.time, n.rep = n.rep,
beta = beta, alpha = alpha, sp.only = sp.only, trend = trend,
psi.RE = psi.RE, p.RE = p.RE, sp = FALSE, ar1 = TRUE,
sigma.sq.t = sigma.sq.t, rho = rho)

# Package all data into a list
# Occurrence
occ.covs <- list(int = dat$x[, , 11,
trend = dat$x[, , 2],
occ.cov.1 = dat$X[, , 31)
# Detection
det.covs <- list(det.cov.1 = dat$X.pl[, , , 21,
det.cov.2 = dat$X.pl[, , , 31)
# Data list bundle
data.list <- list(y = dat$y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs)
# Priors
prior.list <- list(beta.normal = list(mean = @, var = 2.72),
alpha.normal = list(mean = @, var = 2.72),
rho.unif = c(-1, 1),
sigma.sq.t.ig = c(2, 0.5))

# Starting values
z.init <- apply(dat$y, c(1, 2), function(a) as.numeric(sum(a, na.rm = TRUE) > @))
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inits.list <- list(beta

# Tuning

tuning.list <- list(rho

n.batch <- 20

waicOcc

0, alpha = 0, z = z.init)

0.5)

batch.length <- 25
n.samples <- n.batch * batch.length

n.burn <- 100
n.thin <- 1

# Run the model
out <- tPGOcc(occ.formula = ~ trend + occ.cov.1,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,

inits = inits.list,

priors = prior.list,

tuning = tuning.list,

n

.batch = n.batch,

batch.length = batch.length,
verbose = TRUE,

ar1 = TRUE,

n.report = 25,

n.burn = n.burn,

n.thin = n.thin,

n.chains = 1)

summary (out)
waicOcc Compute Widely Applicable Information Criterion for spOccupancy
Model Objects
Description

Function for computing the Widely Applicable Information Criterion (WAIC; Watanabe 2010) for
spOccupancy model objects.

Usage
waicOcc(object, ...)
Arguments
object an object of class PGOcc, spPGOcc, msPGOcc, spMsPGOcc, intPGOcc, spIntPGOcc,

1fJSDM, sfJISDM, 1fMsPGOcc, sfMsPGOcc, tPGOcc, stPGOcc, svcPGBinom, svcPGOcc,
svcTPGBinom, or svcTPGOcc.

currently no additional arguments
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Details

The effective number of parameters is calculated following the recommendations of Gelman et al.
(2014).

Value

When object is of class PGOcc, spPGOcc, msPGOcc, spMsPGOcc, 1fJSDM, sfJSDM, 1fMsPGOcc,
sfMsPGOcc, tPGOcc, stPGOcc, svcPGBinom, or svcPGOcc, returns a vector with three elements cor-
responding to estimates of the expected log pointwise predictive density (elpd), the effective number
of parameters (pD), and the WAIC. When object is of class intPGOcc or spIntPGOcc, returns a
data frame with columns elpd, pD, and WAIC, with each row corresponding to the estimated values
for each data source in the integrated model.

Author(s)

Jeffrey W. Doser <doser jef@msu.edu>,
Andrew O. Finley <finleya@msu.edu>

References
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Examples

set.seed(400)
# Simulate Data ——————=——=—=————-— oo
J.x <- 8
J.y <=8
J<-J.x*xJ.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- ¢(0.5, -0.15)
p.occ <- length(beta)
alpha <- c(0.7, 0.4)
p.det <- length(alpha)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sp = FALSE)
occ.covs <- dat$X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov = dat$X.p[, , 21)
# Data bundle
data.list <- list(y = dat$y,
0CC.COVS = 0CC.COVS,
det.covs = det.covs)
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# Priors
prior.list <- list(beta.normal = list(mean = rep(@, p.occ),
var = rep(2.72, p.occ)),
alpha.normal = list(mean = rep(@, p.det),
var = rep(2.72, p.det)))
# Initial values
inits.list <- list(alpha = rep(@, p.det),
beta = rep(@, p.occ),
z = apply(data.list$y, 1, max, na.rm = TRUE))

n.samples <- 5000
n.report <- 1000

out <- PGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov,
data = data.list,
inits = inits.list,
n.samples = n.samples,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = n.report,
n.burn = 4000,
n.thin = 1)

# Calculate WAIC
waicOcc(out)
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