Package ‘utilities’

June 23, 2021
Type Package
Title Data Utility Functions
Version 0.3.0
Date 2021-06-09
Author Ben O'Neill [aut, cre]
Maintainer Ben O'Neill <ben.oneill@hotmail.com>

Description Data utility functions for use in probability and statistics. Includes functions for comput-
ing higher-moments for samples and their decompositions.
Also includes utilities to examine functional mappings between factor variables and other vari-
ables in a data set.

License MIT + file LICENSE

Encoding UTF-8

Imports stats

Suggests ggplot2, ggdag, matrixStats
RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-06-23 04:20:02 UTC

R topics documented:

datasets.Str. e e e e e e e e e e e e e e e 2
kKurtosis 2
10g . . e e 3
MAPPINGS « . v o o v e 4
MOMENTS v v v e et e 5
nlmprob oL e e e 7
plot.datamappings 9
TILALE © . o o o o e e e e e e e e e 10
sample.all L e 11
sample.decomp L e 11
SKEWNness L e e e e 13
SOftMAX e e e e e e e e e e 14

2 kurtosis

Index 15

datasets.str Structure of Available Datasets

Description

datasets. str returns the structure of available datasets

Usage

datasets.str(package = NULL)

Arguments

package The package/packages containing the datasets of interest

Details

Datasets are often available in packages loaded into R and it is useful to know the structure of these
datasets. This function shows the user the strucure of all available datasets in a specified package
or packages. (If the user does not specify a package) then the function searches over all available
packages.

Value

A data frame listing available data sets, invisibly

Examples

datasets.str("datasets"”)

kurtosis Sample Kurtosis

Description

kurtosis returns the sample kurtosis of a data vector/matrix

Usage

kurtosis(x, kurt.type = NULL, kurt.excess = FALSE, na.rm = FALSE)

log 3
Arguments
X A data vector/matrix
kurt.type The type of kurtosis statistic used ("Moment’, ’Fisher Pearson’ or ’Adjusted
Fisher Pearson’)
kurt.excess Logical value; if TRUE the function gives the excess kurtosis (instead of raw
kurtosis)
na.rm Logical value; if TRUE the function removes NA values
Details
This function computes the sample kurtosis for a data vector or matrix. For a vector input the
function returns a single value for the sample kurtosis of the data. For a matrix input the function
treats each column as a data vector and returns a vector of values for the sample kurtosis of each of
these datasets. The function can compute different types of kurtosis statistics using the kurt. type
input.
Value
The sample kurtosis of the data vector/matrix
Examples
kurtosis(rnorm(1000))
kurtosis(rexp(1000))
log Logarithm Function
Description
log returns the logarithm of the input
Usage
log(x, base = exp(1), gradient = FALSE, hessian = FALSE)
log2(x, gradient = FALSE, hessian = FALSE)
logl0(x, gradient = FALSE, hessian = FALSE)
Arguments
X An input value (numeric/complex scalar or vector)
base The base for the logarithm (a positive scalar value)
gradient Logical; if TRUE the output will include a 'gradient' attribute
hessian Logical; if TRUE the output will include a 'hessian' attribute

4 mappings

Details

This version of the logarithm function allows both numeric and complex inputs, including negative
numeric values. If the output of the logarithm has no complex part then the output is given as a
numeric value. It also allows the user to generate the gradient and Hessian.

Value

The logarithm of the input

Examples

log(1)
log(-1)
logi1@(-10, TRUE, TRUE)

mappings Examine mappings between factor variables in a data-frame

Description

mappings determines the mappings between factor variables in a data-frame

Usage
mappings(data, na.rm = TRUE, all.vars = FALSE, plot = TRUE)

Arguments
data A data-frame (or an object coercible to a data-frame)
na.rm Logical value; if TRUE the function removes NA values from consideration
all.vars Logical value; if TRUE the function only examines factor variables in the data-
frame; if FALSE the function examines all variables in the data-frame (caution is
required in interpretation of output)
plot Logical value; if TRUE the function plots the DAG for the mappings (requires
ggplot2 and ggdag to work)
Details

In preliminary data analysis prior to statistical modelling, it is often useful to investigate whether
there are mappings between factor variables in a data-frame in order to see if any of these factor
variables are redundant (i.e., fully determined by other factor variables). This function takes an
input data-frame data and examines whether there are any mappings between the factor variables.
(Note that the function will interpret all character variables as factors but will not interpret numeric
or logical variables as factors.) The output is a list showing the uniqueness of the binary relations
between the factor variables (a logical matrix showing left-uniqueness in the binary relations), the
mappings between factor variables, the redundant and non-redundant factor variables, and the di-
rected acyclic graph (DAG) of these mappings (the last element requires the user to have the ggdag

moments 5

package installed; it is omitted if the package is not installed). If plot = TRUE the function also
returns a plot of the DAG (if ggdag and ggplot2 packages are installed).

Note that the function also allows the user to examine mappings between all variables in the data-
frame (i.e., not just the factor variables) by setting all.vars = TRUE. The output from this analysis
should be interpreted with caution; one-to-one mappings between non-factor variables are com-
mon (e.g., when two variables are continuous it is almost certain that they will be in a one-to-one
mapping), and so the existence of a mapping may not be indicative of variable redundancy.

Note on operation: If na.rm=FALSE then the function analyses the mappings between the fac-
tors/variables without removing NA values. In this case an NA value is treated as a missing value
that could be any outcome. Consequently, for purposes of determining whether there is a mapping
between the variables, an NA value is treated as if it were every possible value. The mapping is
falsified if there are at least two identical values in the domain (which may include one or more NA
values) that map to different values in the codomain (which may include one or more NA values).

Value

A list object of class 'mappings’ giving information on the mappings between the variables

Examples

DATA <- data.frame(
VART = ¢(0,1,2,2,0,1,2
VAR2 = c('A','B','B","

’0’071)7
B','A",'B','B','A",'A",'B"),

VAR3 = 1:10,
VAR4:C(|Al,IBV’ICI’IDI,IAI’lB|yIDI,VAI’IAV’IBI),
VAR5 = c(1:5,1:5)

)

Apply mappings
mappings(DATA, all.vars = TRUE, plot = FALSE)

moments Sample Moments

Description

moments returns the sample moments of a data vector/matrix

Usage

moments (
X,
skew.type = NULL,
kurt.type = NULL,
kurt.excess = FALSE,
na.rm = TRUE,
include.sd = FALSE

Arguments

X

skew. type

kurt.type

kurt.excess

na.rm

include.sd

Details

moments

A data vector/matrix/list

The type of kurtosis statistic used ("Moment’, ’Fisher Pearson’ or ’Adjusted
Fisher Pearson’)

The type of kurtosis statistic used ("Moment’, ’Fisher Pearson’ or ’Adjusted
Fisher Pearson’)

Logical value; if TRUE the function gives the excess kurtosis (instead of raw
kurtosis)

Logical value; if TRUE the function removes NA values

Logical value; if TRUE the output includes a column for the sample standard
deviation (if needed)

This function computes the sample moments for a data vector, matrix or list (sample mean, sample
variance, sample skewness and sample kurtosis). For a vector input the function returns a single
value for each sample moment of the data. For a matrix or list input the function treats each col-
umn/element as a data vector and returns a matrix of values for the sample moments of each of
these datasets. The function can compute different types of skewness and kurtosis statistics using
the skew. type, kurt.type and kurt.excess inputs. (For details on the different types of skewness
and kurtosis statistics, see Joanes and Gill 1998.)

Value

A data frame containing the sample moments of the data vector/matrix

Examples

#Create some subgroups of mock data and a pooled dataset

set.seed(1)

N <- c(28, 44, 51)

SUB1 <- rnorm(N[11)

SUB2 <- rnorm(N[21)

SUB3 <- rnorm(N[3])

DATA <- list(Subgroupl = SUB1, Subgroup2 = SUB2, Subgroup3 = SUB3)
POOL <- c(SUBT, SUB2, SUB3)

#Compute sample moments for subgroups and pooled data
MOMENTS <- moments(DATA)
POOLMOM <- moments(POOL)

#Compute pooled moments via sample decomposition
sample.decomp(moments = MOMENTS)

nlm.prob 7

nlm.prob Nonlinear minimisation/maximisation allowing probability vectors as
inputs

Description

nlm.prob minimises/maximises a function allowing probability vectors as inputs

Usage

nlm.prob(
f,
p,
prob.vectors = list(1:1length(p)),

lambda = 1,

etadmax = 1e+10,

maximise = FALSE,

maximize = maximise,

hessian = FALSE,

typsize = rep(1, length(p)),

fscale = 1,
print.level = 0,
ndigit = 12,
gradtol = 1e-06,

stepmax = max(1000 * sqrt(sum((p/typsize)*2)), 1000),
steptol = 1e-06,

iterlim = 100,

check.analyticals = TRUE

)

Arguments
f The objective function to be minimised; output should be a single numeric value.
p Starting argument values for the minimisation.

prob.vectors Alistspecifying which sets of elements are constrained to be a probability vector
(each element in the list should be a vector specifying indices in the argument
vector; elements cannot overlap into multiple probability vectors).
Additional arguments to be passed to f via nlm

lambda The tuning parameter used in the softmax transformation for the optimisation (a
single positive numeric value).

etadmax The maximum absolute value for the elements of eta0 (the starting value in the
unconstrained optimisation problem).

maximise, maximize
Logical value; if TRUE the function maximises the objective function instead of
mimimising.

8 nlm.prob

hessian Logical; if TRUE then the output of the function includes the Hessian of f at the
minimising point.

typsize An estimate of the size of each parameter at the minimum.

fscale An estimate of the size of f at the minimum.

print.level This argument determines the level of printing which is done during the minimi-

sation process. The default value of @ means that no printing occurs, a value of
1 means that initial and final details are printed and a value of 2 means that full
tracing information is printed.

ndigit The number of significant digits in the function f.

gradtol A positive scalar giving the tolerance at which the scaled gradient is considered
close enough to zero to terminate the algorithm. The scaled gradient is a measure
of the relative change in f in each direction p[i] divided by the relative change
inp[il.

stepmax A positive scalar which gives the maximum allowable scaled step length. stepmax
is used to prevent steps which would cause the optimisation function to overflow,
to prevent the algorithm from leaving the area of interest in parameter space, or
to detect divergence in the algorithm. stepmax would be chosen small enough
to prevent the first two of these occurrences, but should be larger than any antic-
ipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

iterlim A positive integer specifying the maximum number of iterations to be performed
before the routine is terminated.

check.analyticals
Logical; if TRUE then the analytic gradients and Hessians (if supplied) are checked
against numerical derivatives at the initial parameter values. This can help detect
incorrectly formulated gradients or Hessians.

Details

This is a variation of the stats: :nlm function for nonlinear minimisation. The present function
is designed to minimise an objective function with one or more arguments that are probability
vectors. (The objective function may also have other arguments that are not probability vectors.)
The function uses the same inputs as the stats: : nlm function, except that the user can use the input
prob.vectors to specify which inputs are constrained to be probability vectors. This input is a list
where each element in the list specifies a set of indices for the argument of the objective function; the
specified set of indices is constrained to be a probability vector (i.e., each corresponding argument
is non-negative and the set of these arguments must sum to one). The input prob.vectors may list
one or more probability vectors, but they must use disjoint elements of the argument (i.e., a variable
in the argument cannot appear in more than one probability vector).

Optimisation is performed by first converting the objective function into unconstrained form using
the softmax transformation and its inverse to convert from unconstrained space to probability space
and back. Optimisation is done on the unconstrained objective function and the results are converted
back to probability space to solve the constrained optimisation problem. For purposes of conversion,
this function allows specification of a tuning parameter 1ambda for the softmax and inverse- softmax
transformations. (This input can either be a single tuning value used for all conversions, or a vector

plot.data.mappings 9

of values for the respective probability vectors; if the latter, there must be one value for each element
of the prob.vector input.)

Most of the input descriptions below are adapted from the corresponding descriptions in stat: :nlm,
since our function is a wrapper to that function. The additional inputs for this function are prob.vectors,
lambda and eta®@max. The function also adds an option maximise to conduct maximisation instead

of minimisation.

Value

A list showing the computed minimising point and minimum of f and other related information.

Examples

x <= rbinom(100, 1, .2)
nlm.prob(function(p) sum(dbinom(x,1,p[2],log=TRUE)), c(.5, .5), maximise = TRUE)

plot.data.mappings Plot components from data mapping

Description

This needs ggplot2 and ggdag to function correctly.

Usage

S3 method for class 'data.mappings'

plot(x, node.size = 1, text.size = 1, line.width =1, ...)
Arguments

X a data mapping

node.size node size

text.size label size for a node

line.width line width

not used

Value

nothing

10 rm.attr

rm.attr Remove (non-protected) attributes from an object

Description

rm.attr removes (non-protected) attributes from an object

Usage
rm.attr(
object,
list.levels = Inf,
protected = c("class”, "dim", "names”, "dimnames"”, "rownames”, "colnames")
)
Arguments
object An object to operate on attributes from the object
list.levels A non-negative integer specifying the number of levels of lists to apply the re-
moval to
protected A character vector containing the names of protected attributes (not to be re-
moved)
Details

This function removes non-protected attributes from an R object. If the object is a list then the func-
tion will remove attributes within elements of the list down to the level specified by the list.levels
input. (By default the function removes attributes from all levels of lists.) If you do not want to
remove attributes from elements of a list (but still remove attributes from the outer level) you can
set list.levels =@ to do this..

Value

The object is returned with non-protected attributes removed

Examples

a <- structure(list(structure(1, x=2, names=3),
list(@, structure(3, x=4, names=5))),
x=3, names = 4)

str(rm.attr(a, 1))

sample.all 11

sample.all All Sampling Variations/Permutations

Description

sample.all returns a matrix of all sampling variations/permutations from a set of integers

Usage

sample.all(n, size = n, replace = FALSE, prob = NULL)

Arguments
n Number of integers to sample from
size Length of the sample vectors
replace Logical value; if FALSE the sampling is without replacement; if TRUE the sam-
pling is with replacement
prob Probability vector giving the sampling probability for each element (must be a
probability vector with length n)
Details
This function computes all sample vectors of size size composed of the elements 1, ... ,n, either
with or without replacement of elements. If size = n and replace = TRUE then the list of all sample
vectors corresponds to a list of all permutations of the integers 1, ... ,n.
Value
A matrix of all permutations of the elements 1, . . .,n (rows of the matrix give the permutations)
Examples

sample.all(n = 4, replace = FALSE)

sample.decomp Sample decomposition

Description

sample.decomp returns the data-frame of sample statistics for sample groups and their pooled sam-
ple

12

Usage

sample.decomp(
moments = NULL,

n = NULL,
sample.mean = NULL,
sample.sd = NULL,
sample.var = NULL,
sample.skew = NULL,
sample.kurt = NULL,
names NULL,
pooled = NULL,

skew.type = NULL,
kurt.type = NULL,
kurt.excess = NULL,
include.sd = FALSE

Arguments

moments

n

sample.mean
sample.sd

sample.var
sample. skew

sample.kurt

names

pooled

skew. type

kurt.type

kurt.excess

include.sd

Details

A data-frame of moments (an object of class 'moments’)

A vector of sample sizes

A vector of sample standard deviations

A vector of names for the sample groups

A vector of sample means

A vector of sample variances
A vector of sample skewness

A vector of sample kurotsis

sample.decomp

The number of the pooled group (if the pooled group is already present)

The type of skewness statistic used ("Moment’, "Fisher Pearson’ or ’Adjusted

Fisher Pearson’)

The type of kurtosis statistic used ("Moment’, ’Fisher Pearson’ or ’Adjusted

Fisher Pearson’)

Logical value; if TRUE the sample kurtosis is the excess kurtosis (instead of the
raw kurtosis)

Logical value; if TRUE the output includes a column for the sample standard
deviation (if needed)

It is often useful to take a set of sample groups with known sample statistics and aggregate these
into a single pooled sample and find the sample statistics of the pooled sample. Likewise, it is
sometimes useful to take a set of sample groups and a pooled group with known sample statistics
and determine the statistics of the other group required to complete the pooled sample. Both of
these tasks can be accomplished using decomposition formulae for the sample size, sample mean
and sample variance (or sample standard deviation). This function implements either of these two

skewness 13

decomposition methods to find the sample statistics of the pooled sample or the other group re-
maining to obtain the pooled sample. The user inputs vectors for the sample size, sample mean
and sample variance (or sample standard deviation). By default the groups are taken to be separate
groups and the function computes the sample statistics for the pooled sample However, the user
can input the number pooled sample as the input pooled; in this case that group is treated as the
pooled sample and the function computes the other sample group required to obtain this pooled
sample. The function returns a data-frame showing the sample statistics for all the groups including
the pooled sample.

Value

A data-frame of all groups showing their sample sizes and sample moments

See Also

moments

skewness Sample Skewness

Description

skewness returns the sample skewness of a data vector/matrix

Usage

skewness(x, skew.type = NULL, na.rm = FALSE)

Arguments
X A data vector/matrix
skew. type The type of skewness statistic used ("Moment’, *Fisher Pearson’ or ’Adjusted
Fisher Pearson’)
na.rm Logical value; if TRUE the function removes NA values
Details

This function computes the sample skewness for a data vector or matrix. For a vector input the
function returns a single value for the sample skewness of the data. For a matrix input the function
treats each column as a data vector and returns a vector of values for the sample skewness of each of
these datasets. The function can compute different types of skewness statistics using the skew. type
input.

Value

The sample skewness of the data vector/matrix

14 softmax

Examples

skewness(rnorm(1000))
skewness(rexp(1000))

softmax Softmax and inverse-softmax functions

Description

softmax returns the value of the softmax function. softmaxinv returns the value of the inverse-
softmax function.

Usage
softmax(eta, lambda = 1, gradient = FALSE, hessian = FALSE)

softmaxinv(p, lambda = 1, gradient = FALSE, hessian = FALSE)

Arguments
eta A numeric vector input
lambda Tuning parameter (a single positive value)
gradient Logical; if TRUE the output will include a 'gradient' attribute
hessian Logical; if TRUE the output will include a 'hessian' attribute
p A probability vector (i.e., numeric vector of non-negative values that sum to
one)
Details

The softmax function is a bijective function that maps a real vector with length m-1 to a probability
vector with length m with all non-zero probabilities. The softmax function is useful in a wide range
of probability and statistical applications. The present functions define the softmax function and its
inverse, both with a tuning parameter.

Value

Value of the softmax function

Examples

softmax(5:7)
softmaxinv(softmax(5:7))

Index

datasets.str, 2
kurtosis, 2

log, 3
logi0 (log), 3
log2 (log), 3

mappings, 4
moments, 5, 13

nlm.prob, 7

plot.data.mappings, 9
print.data.mappings (mappings), 4

rm.attr, 10

sample.all, 11
sample.decomp, 11
skewness, 13
softmax, 14

softmaxinv (softmax), 14

15

	datasets.str
	kurtosis
	log
	mappings
	moments
	nlm.prob
	plot.data.mappings
	rm.attr
	sample.all
	sample.decomp
	skewness
	softmax
	Index

